Abstract

We have developed a method to use a half-size data page between two full-size data pages to increase the recording density in angular multiplexing holographic memory up to 1.5× as much as the conventional angular multiplexing sequence. In our recording sequence, the full- and half-size data pages are alternately multiplexed. This is because each plane wave from various points in a data page has different angular selectivity. A half-size data page has higher angular selectivity than a full-size data page. The required angular intervals were estimated by numerical simulation taking holographic medium tilt into account. Also, an angular multiplexing experiment using the half-data-page insertion method resulted in a low bit error rate of the order of 103, which is sufficient for practical use.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  2. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording,” Appl. Opt. 46, 1460–1466 (2007).
    [CrossRef] [PubMed]
  3. G. A. Rakuljic, V. Levya, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  4. C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
    [CrossRef]
  5. N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009).
    [CrossRef]
  6. K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010).
    [CrossRef]
  7. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
    [CrossRef]
  8. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  9. S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252(2006).
    [CrossRef]
  10. M. Miura, K. Nitta, and O. Matoba, “Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing,” J. Opt. Soc. Am. A 26, 2269–2274 (2009).
    [CrossRef]
  11. Y. Yonetani, K. Nitta, and O. Matoba, “Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage,” Appl. Opt. 49, 694–700 (2010).
    [CrossRef] [PubMed]
  12. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Image-based numerical evaluation techniques in volume holographic memory systems,” J. Opt. Soc. Am. B 24, 792–798(2007).
    [CrossRef]
  13. K. Matsushima, “Formulation of the rotational transformation of wave fields and their application to digital holography,” Appl. Opt. 47, D110–D116 (2008).
    [CrossRef] [PubMed]
  14. N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010).
    [CrossRef]
  15. T. Ando, K. Masaki, and T. Shimizu, “Holographic read-only memory fabricated by deposition of reflector after writing process with aromatic photopolymer recording layer,” Jpn. J. Appl. Phys. 49, 08KD02 (2010).
    [CrossRef]
  16. M. R. Ayres, A. Hoskins, P. C. Smith, and J. Kane, “Wobble alignment for angularly multiplexed holograms,” in Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage (SPIE, 2008), pp. 460–462.
  17. H. Pishro-Nik, N. Rahnavard, J. Ha, F. Fekri, and A. Adibi, “Low-density parity-check codes for volume holographic memory systems,” Appl. Opt. 42, 861–870 (2003).
    [CrossRef] [PubMed]

2010

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010).
[CrossRef]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010).
[CrossRef]

T. Ando, K. Masaki, and T. Shimizu, “Holographic read-only memory fabricated by deposition of reflector after writing process with aromatic photopolymer recording layer,” Jpn. J. Appl. Phys. 49, 08KD02 (2010).
[CrossRef]

Y. Yonetani, K. Nitta, and O. Matoba, “Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage,” Appl. Opt. 49, 694–700 (2010).
[CrossRef] [PubMed]

2009

M. Miura, K. Nitta, and O. Matoba, “Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing,” J. Opt. Soc. Am. A 26, 2269–2274 (2009).
[CrossRef]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009).
[CrossRef]

2008

M. R. Ayres, A. Hoskins, P. C. Smith, and J. Kane, “Wobble alignment for angularly multiplexed holograms,” in Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage (SPIE, 2008), pp. 460–462.

K. Matsushima, “Formulation of the rotational transformation of wave fields and their application to digital holography,” Appl. Opt. 47, D110–D116 (2008).
[CrossRef] [PubMed]

2007

2006

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252(2006).
[CrossRef]

2004

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

2003

1998

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

1993

1992

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Adibi, A.

Ando, T.

T. Ando, K. Masaki, and T. Shimizu, “Holographic read-only memory fabricated by deposition of reflector after writing process with aromatic photopolymer recording layer,” Jpn. J. Appl. Phys. 49, 08KD02 (2010).
[CrossRef]

Ayres, M. R.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010).
[CrossRef]

M. R. Ayres, A. Hoskins, P. C. Smith, and J. Kane, “Wobble alignment for angularly multiplexed holograms,” in Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage (SPIE, 2008), pp. 460–462.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Curtis, K.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010).
[CrossRef]

Denz, C.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

Dhar, L.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010).
[CrossRef]

Fekri, F.

Fukumoto, A.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252(2006).
[CrossRef]

Ha, J.

Heimann, T.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Hill, A. J.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010).
[CrossRef]

Hoskins, A.

M. R. Ayres, A. Hoskins, P. C. Smith, and J. Kane, “Wobble alignment for angularly multiplexed holograms,” in Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage (SPIE, 2008), pp. 460–462.

Ishii, N.

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010).
[CrossRef]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009).
[CrossRef]

Kamijo, K.

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010).
[CrossRef]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009).
[CrossRef]

Kane, J.

M. R. Ayres, A. Hoskins, P. C. Smith, and J. Kane, “Wobble alignment for angularly multiplexed holograms,” in Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage (SPIE, 2008), pp. 460–462.

Kinoshita, N.

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010).
[CrossRef]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Lambourdiere, S. R.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252(2006).
[CrossRef]

Levya, V.

Masaki, K.

T. Ando, K. Masaki, and T. Shimizu, “Holographic read-only memory fabricated by deposition of reflector after writing process with aromatic photopolymer recording layer,” Jpn. J. Appl. Phys. 49, 08KD02 (2010).
[CrossRef]

Matoba, O.

Matsushima, K.

Miura, M.

Mok, F. H.

Müller, K.-O.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

Muroi, T.

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010).
[CrossRef]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009).
[CrossRef]

Nitta, K.

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Pishro-Nik, H.

Rahnavard, N.

Rakuljic, G. A.

Shimidzu, N.

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010).
[CrossRef]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009).
[CrossRef]

Shimizu, T.

T. Ando, K. Masaki, and T. Shimizu, “Holographic read-only memory fabricated by deposition of reflector after writing process with aromatic photopolymer recording layer,” Jpn. J. Appl. Phys. 49, 08KD02 (2010).
[CrossRef]

Smith, P. C.

M. R. Ayres, A. Hoskins, P. C. Smith, and J. Kane, “Wobble alignment for angularly multiplexed holograms,” in Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage (SPIE, 2008), pp. 460–462.

Tanaka, K.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252(2006).
[CrossRef]

Tschudi, T.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

Watanabe, K.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252(2006).
[CrossRef]

Wilson, W. L.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010).
[CrossRef]

Yariv, A.

Yonetani, Y.

Yoshimura, T.

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

IEEE J. Sel. Top. Quantum Electron.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009).
[CrossRef]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252(2006).
[CrossRef]

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010).
[CrossRef]

T. Ando, K. Masaki, and T. Shimizu, “Holographic read-only memory fabricated by deposition of reflector after writing process with aromatic photopolymer recording layer,” Jpn. J. Appl. Phys. 49, 08KD02 (2010).
[CrossRef]

Opt. Lett.

Proc. IEEE

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Other

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010).
[CrossRef]

M. R. Ayres, A. Hoskins, P. C. Smith, and J. Kane, “Wobble alignment for angularly multiplexed holograms,” in Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage (SPIE, 2008), pp. 460–462.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the signal and reference beams in angular multiplexing holographic memory with a (a) short and (b) long focal length lens system.

Fig. 2
Fig. 2

Angles between the reference beam and the three plane waves from points A, B, and C on the SLM.

Fig. 3
Fig. 3

(a) Full and (b) half-format data pages.

Fig. 4
Fig. 4

(a) Top and (b) perspective view of the numerical simulation model of angular multiplexing holographic memory using phase-conjugate readout with tilted recording medium.

Fig. 5
Fig. 5

Flow chart for numerical simulation.

Fig. 6
Fig. 6

Numerical results of angular selectivity curves for full- and half-format data page.

Fig. 7
Fig. 7

Reference beam angle allocation for three multiplexing holograms including target and (a) full-format or (b) half-format data pages on both angular sides.

Fig. 8
Fig. 8

SNR dependencies on angular interval when full- or half-format data pages are recorded on both sides of the target hologram.

Fig. 9
Fig. 9

(a) Schematic diagram and (b) photo of experimental optics. M, mirror; HWP, half-wave plate; PBS, polarizing beam splitter; SA, square aperture; RL, relay lens; G, galvanometer mirror.

Fig. 10
Fig. 10

Experimental results of angular selectivity curves for full- and half-format data pages.

Fig. 11
Fig. 11

Angle layout for multiplexing full- and half-format data pages alternately.

Fig. 12
Fig. 12

(a) Reproduced data page number 2 at Δ θ = 0.07 ° and (b) the SNR map for the data page.

Fig. 13
Fig. 13

Measured BERs as function of data page number.

Tables (1)

Tables Icon

Table 1 Parameters for Numerical Estimations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D = N / S × m ,
G ( u , v ; z = L ) = G ( u , v ; z = 0 ) exp ( j 2 π L w ) ,
[ u v w ] = T y [ U V W ] ,
T y = [ cos θ y 0 sin θ y 0 1 0 sin θ y 0 cos θ y ] .
S ( U , V ; ζ = 0 ) = G ( U cos θ y + W sin θ y , V ; z = L ) | J y ( U , V ) | ,
J y ( U , V ) = cos θ y U W sin θ y .
S ( U , V ; ζ = i Δ t ) = S ( U , V ; ζ = 0 ) exp ( j 2 π i Δ t W ) .
s i ( ξ , η ; ζ = i Δ t ) j k n 1 Δ t I max exp ( j k n 0 Δ t ) · r i ( ξ , η ; ζ = i Δ t ) r i ( ξ , η ; ζ = i Δ t ) s i * ( ξ , η ; ζ = i Δ t ) ,
SNR μ ON μ OFF σ ON 2 + σ OFF 2 ,

Metrics