Abstract

A polarization-dependent circular Dammann grating (CDG) was generated from an azo-dye-doped liquid crystal (LC) cell. A simple multiexposure photo-alignment process was used to fabricate a binary phase LC CDG zone plane, which was composed of an odd zone with a twisted nematic LC structure and an even zone with a homogenous LC structure. A two-order CDG with equal-intensity rings was produced through a Fourier transform. The maximum zeroth and first diffraction orders of obtained CDG can be separately achieved by rotating the analyzer’s polarization direction. The CDG using an azo- dye-doped LC cell can be used to generate diffractions by lasers in a broad wavelength range, hence expanding possible device applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Zhou, J. Jia, and L. Liu, “Circular Dammann grating,” Opt. Lett. 28, 2174–2176 (2003).
    [CrossRef] [PubMed]
  2. S. Zhao and P. S. Chung, “Design of a circular Dammann grating,” Opt. Lett. 31, 2387–2389 (2006).
    [CrossRef] [PubMed]
  3. F. J. Wen and P. S. Chung, “A new circular Dammann grating using a Hankel transform,” J. Opt. A: Pure Appl. Opt. 10, 075306 (2008).
    [CrossRef]
  4. F. J. Wen, S. Y. Law, and P. S. Chung, “Design of circular Dammann gratings by employing the circular spot rotation method,” Appl. Opt. 46, 5452–5455 (2007).
    [CrossRef] [PubMed]
  5. U. Levy, B. Desiatov, I. Goykhman, T. Nachmias, A. Ohayon, and S. E. Meltzer, “Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography,” Opt. Lett. 35, 880–882 (2010).
    [CrossRef] [PubMed]
  6. S. Zhao, J. F. Wen, and P. S. Chung, “Simple focal-length measurement technique with a circular Dammann grating,” Appl. Opt. 46, 44–49 (2007).
    [CrossRef]
  7. S. Zhao and P. S. Chung, “Collimation testing using a circular Dammann grating,” Opt. Commun. 279, 1–6 (2007).
    [CrossRef]
  8. F. J. Wen and P. S. Chung, “Use of the circular Dammann grating in angle measurement,” Appl. Opt. 47, 5197–5200(2008).
    [CrossRef] [PubMed]
  9. F. J. Wen, Z. Chen, and P. S. Chung, “Area measurement at long-distance using a circular Dammann grating,” Appl. Opt. 49, 648–652 (2010).
    [CrossRef] [PubMed]
  10. K. B. Doh, K. Dobson, T.-C. Poon, and P. S. Chung, “Optical image coding with a circular Dammann grating,” Appl. Opt. 48, 134–139 (2009).
    [CrossRef]
  11. K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847–1874 (2000).
    [CrossRef]
  12. A. G. Chen and D. J. Brady, “Real-time holography in azo-dye-doped liquid crystals,” Opt. Lett. 17, 441–443 (1992).
    [CrossRef] [PubMed]
  13. T.-H. Lin, Y. H. Huang, A. Y. G. Fuh, and S.-T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359–2364 (2006).
    [CrossRef] [PubMed]
  14. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906(2007).
    [CrossRef] [PubMed]
  15. J.-R. Wang, C.-R. Lee, and M.-R. Lee, “Photorefractive effect induced by polarization gratings in dye-doped liquid crystals,” Opt. Lett. 29, 110–112 (2004).
    [CrossRef] [PubMed]
  16. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
    [CrossRef]
  17. T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystals,” Appl. Phys. Lett. 87, 161112 (2005).
    [CrossRef]
  18. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31, 3336–3338 (2006).
    [CrossRef] [PubMed]
  19. C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96, 191103(2010).
    [CrossRef]
  20. T. T. Alkeskjold, J. Lægasgaard, and A. Bjarklev, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
    [CrossRef] [PubMed]
  21. P. Yeh and C. Gu, “Jones matrix method,” in Optics of Liquid Crystal Displays, 2nd ed. (Wiley, 2010), pp. 173–289.

2010 (3)

2009 (1)

2008 (2)

F. J. Wen and P. S. Chung, “Use of the circular Dammann grating in angle measurement,” Appl. Opt. 47, 5197–5200(2008).
[CrossRef] [PubMed]

F. J. Wen and P. S. Chung, “A new circular Dammann grating using a Hankel transform,” J. Opt. A: Pure Appl. Opt. 10, 075306 (2008).
[CrossRef]

2007 (4)

2006 (4)

2005 (1)

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystals,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

2004 (2)

2003 (1)

2000 (1)

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847–1874 (2000).
[CrossRef]

1992 (1)

Alkeskjold, T. T.

Bjarklev, A.

Brady, D. J.

Chen, A. G.

Chen, Z.

Chung, P. S.

Cloutier, S. G.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31, 3336–3338 (2006).
[CrossRef] [PubMed]

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31, 3336–3338 (2006).
[CrossRef] [PubMed]

Desiatov, B.

Dobson, K.

Doh, K. B.

Fuh, A. Y. G.

Fuh, A. Y.-G.

Gorkhali, S. P.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31, 3336–3338 (2006).
[CrossRef] [PubMed]

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

Goykhman, I.

Gu, C.

P. Yeh and C. Gu, “Jones matrix method,” in Optics of Liquid Crystal Displays, 2nd ed. (Wiley, 2010), pp. 173–289.

Huang, C.-M.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96, 191103(2010).
[CrossRef]

Huang, C.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96, 191103(2010).
[CrossRef]

Huang, Y. H.

Ichimura, K.

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847–1874 (2000).
[CrossRef]

Jau, H.-C.

Jia, J.

Kawatsuki, N.

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystals,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

Kuwabara, M.

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystals,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

Lægasgaard, J.

Law, S. Y.

Lee, C.-R.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96, 191103(2010).
[CrossRef]

J.-R. Wang, C.-R. Lee, and M.-R. Lee, “Photorefractive effect induced by polarization gratings in dye-doped liquid crystals,” Opt. Lett. 29, 110–112 (2004).
[CrossRef] [PubMed]

Lee, M.-R.

Levy, U.

Lin, L.-C.

Lin, T.-H.

Liu, L.

Lo, K.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96, 191103(2010).
[CrossRef]

Meltzer, S. E.

Nachmias, T.

Ohayon, A.

Ono, H.

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystals,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

Poon, T.-C.

Sasaki, T.

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystals,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

Tsai, H.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96, 191103(2010).
[CrossRef]

Wang, J.-R.

Wang, Y.-H.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96, 191103(2010).
[CrossRef]

Wen, F. J.

Wen, J. F.

Wu, S.-T.

Yeh, P.

P. Yeh and C. Gu, “Jones matrix method,” in Optics of Liquid Crystal Displays, 2nd ed. (Wiley, 2010), pp. 173–289.

Zhao, S.

Zhou, C.

Appl. Opt. (5)

Appl. Phys. Lett. (3)

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystals,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96, 191103(2010).
[CrossRef]

Chem. Rev. (1)

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847–1874 (2000).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Wen and P. S. Chung, “A new circular Dammann grating using a Hankel transform,” J. Opt. A: Pure Appl. Opt. 10, 075306 (2008).
[CrossRef]

Opt. Commun. (1)

S. Zhao and P. S. Chung, “Collimation testing using a circular Dammann grating,” Opt. Commun. 279, 1–6 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Other (1)

P. Yeh and C. Gu, “Jones matrix method,” in Optics of Liquid Crystal Displays, 2nd ed. (Wiley, 2010), pp. 173–289.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross section of a two-order binary phase ( 0 , π ) CDG, (b) theoretical normalized intensity of a two-order CDG, (c) two-order binary phase CDG pattern transferred onto a photomask.

Fig. 2
Fig. 2

Schematic fabrication process of azo-dye-doped LC CDG.

Fig. 3
Fig. 3

Optical microscope images of the photoaligned azo-dye-doped LC cell with CDG pattern in the cases of (a)  30 ° angle of polarizer–polarizer and (b) crossed polarizer– polarizer. Solid line and dashed line represent polarizer 1 and polarizer 2, respectively. The scale bars are 200 μm . (c) The directions of LC directors on substrates 1 and 2 are shown for odd and even ring zones, respectively.

Fig. 4
Fig. 4

Observed images recorded by a CCD (a) without an analyzer and with (b)  30 ° , (c)  15 ° , (d)  0 ° , (e)  15 ° , (f)  30 ° , (g)  45 ° , and (h)  60 ° analyzer–polarizer angle, where 0 ° is along the y axis. Corresponding output light polarization from even ( E even ) and odd ( E odd ) zones, polarization (P), and analyzer (A) directions are shown below each image.

Fig. 5
Fig. 5

Cross section of normalized intensity of the two-order binary CDG obtained in the experiment.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g ( r ) = n = 1 c n sin ( 2 π n T r ) ,
G ( q ) = 1 π n = 1 c n n / T ( n / T + q ) 3 / 2 δ ( 1 / 2 ) ( q n / T ) ,
c n = 2 n π [ 2 cos ( 2 π n x 1 ) + ( 1 ) n + 2 + 1 ] ,

Metrics