Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization-dependent circular Dammann grating made of azo-dye-doped liquid crystals

Not Accessible

Your library or personal account may give you access

Abstract

A polarization-dependent circular Dammann grating (CDG) was generated from an azo-dye-doped liquid crystal (LC) cell. A simple multiexposure photo-alignment process was used to fabricate a binary phase LC CDG zone plane, which was composed of an odd zone with a twisted nematic LC structure and an even zone with a homogenous LC structure. A two-order CDG with equal-intensity rings was produced through a Fourier transform. The maximum zeroth and first diffraction orders of obtained CDG can be separately achieved by rotating the analyzer’s polarization direction. The CDG using an azo- dye-doped LC cell can be used to generate diffractions by lasers in a broad wavelength range, hence expanding possible device applications.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals

Hossein Jashnsaz, Nahid Hosain Nataj, Ezeddin Mohajerani, and Amir Khabbazi
Appl. Opt. 50(22) 4295-4301 (2011)

Circular Dammann grating under high numerical aperture focusing

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Shaoqing Wang, and Jianyong Ma
Appl. Opt. 51(7) 994-999 (2012)

Polarization controllable Fresnel lens using dye-doped liquid crystals

Tsung-Hsien Lin, Yuhua Huang, Andy Y. G. Fuh, and Shin-Tson Wu
Opt. Express 14(6) 2359-2364 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved