Abstract

In a previous paper [Proc. SPIE PSISDG0277-786X 7428, 742807 (2009)], a methodology was developed to model and analyze incoherent ghosts that are formed by two reflections in the paraxial regime. In this paper, we extend the previously developed methodology to model and analyze ghost images that are formed by N (even) reflections. Rather than dealing with ghosts as spots of light, we apply the concept that each ghost has a structure in the nonparaxial regime that depends on the optical system parameters. A methodology to determine the fourth-order ghost aberration function is developed. We present new key parameters for ghost image formation, namely the ghost sagittal and tangential image surfaces. An expression for the paraxial ghost image irradiance distribution of the point object at the nominal image plane is derived. Since focused ghosts are the most bothersome ghosts, tools are proposed to identify potential problematic ghosts. Simulation examples are provided and are used to validate the developed methodology.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical performance of coherent and incoherent imaging systems in the presence of ghost images

Rania H. Abd El-Maksoud, Matthias Hillenbrand, Stefan Sinzinger, and Jose Sasian
Appl. Opt. 51(30) 7134-7143 (2012)

Optical design method for minimization of ghost stray light intensity

S. Grabarnik
Appl. Opt. 54(10) 3083-3089 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (23)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription