Abstract

Electro-optical hybrid logic is a potential solution to implement both electrical and optical signal processing, which receives analog or digital, electrical or optical signals and produces logic signals in a desired manner. In light of the transfer matrix theory, we found that one can steer light into different output ports of a multimode interference coupler by controlling the phases in a multivalued manner on the image-extended arms. This implementation acts as an analog-to-digital convertor from electric domain to optical domain. Also, an electrical-to-optical 2-to-22 binary-coded decoder is described and examined by the 3D beam propagation method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Hartman, “Photonic systems interconnections—overcoming the high speed electronics bottleneck,” Microelectron. Int. 5, 12–18 (1988).
    [CrossRef]
  2. M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotechnology 15, S622–S627(2004).
    [CrossRef]
  3. Z. Zalevsky and A. Rudnitsky, “Nano photonic and ultra fast all-optical processing modules,” Opt. Express 13, 10272–10284 (2005).
    [CrossRef] [PubMed]
  4. R. S. Tucker, “The roles of optics in computing,” Nat. Photon. 4, 405 (2010).
    [CrossRef]
  5. H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photonics Nanostruct. Fundam. Appl. 5, 14–20 (2007).
    [CrossRef]
  6. E. S. Rao, M. Satyam, and K. L.Kishore, “Universal electro-optical hybrid logic gates,” Semicond. Phys. Quantum Electron. Optoelectron. 11, 96–100 (2008).
  7. L. W. Cahill and T. T. Le, “The design of signal processing devices employing SOI MMI couplers,” Proc. SPIE 7220, 7220031 (2009).
    [CrossRef]
  8. C. H. Sarantos and N. Dagli, “A photonic analog-to-digital converter based on an unbalanced Mach–Zehnder quantizer,” Opt. Express 18, 14598–14603 (2010).
    [CrossRef] [PubMed]
  9. H. F. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Steering light into logic patterns with two-dimensional cascaded multimode waveguide,” Chin. Phys. 16, 740–745 (2007).
    [CrossRef]
  10. Z. Chen, Z. Li, and B. Li, “A 2-to-4 decoder switch in SiGe/Si multimode interference,” Opt. Express 14, 2671–2678 (2006).
    [CrossRef] [PubMed]
  11. G. Cincotti, N. Wada, and K.-I. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers-part i: modeling and design,” J. Lightwave Technol. 24, 103–112 (2006).
    [CrossRef]
  12. S.-Y. Cho, S.-W. Seo, M. A. Brooke, and N. M. Jokerst, “Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits,” IEEE J. Quantum Electron. 8, 1427–1434 (2002).
    [CrossRef]
  13. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N×N multi-mode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994).
    [CrossRef] [PubMed]
  14. M. R. Paiam and R. I. MacDonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097–5108 (1997).
    [CrossRef] [PubMed]
  15. L. W. Cahill and F. P. Frank, “Generalized Mach–Zehnder optical switches, WDM and photonic switching devices for network applications,” Proc. SPIE 4289, 113–117 (2001).
    [CrossRef]
  16. R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
    [CrossRef]
  17. Z. Jin, C. J. Kaalund, and G. D. Peng, “Novel approach to design high-performance large-port-count switches in low-index-contrast materials based on cascaded multimode interference couplers,” IEEE J. Quantum Electron. 41, 1548–1551(2005).
    [CrossRef]
  18. H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach–Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
    [CrossRef] [PubMed]
  19. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1×N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005).
    [CrossRef] [PubMed]
  20. J. F. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16, 15304–15311(2008).
    [CrossRef] [PubMed]
  21. J. B. Kuo and S. C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits (Wiley, 2001).

2010 (2)

2009 (2)

2008 (2)

E. S. Rao, M. Satyam, and K. L.Kishore, “Universal electro-optical hybrid logic gates,” Semicond. Phys. Quantum Electron. Optoelectron. 11, 96–100 (2008).

J. F. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16, 15304–15311(2008).
[CrossRef] [PubMed]

2007 (2)

H. F. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Steering light into logic patterns with two-dimensional cascaded multimode waveguide,” Chin. Phys. 16, 740–745 (2007).
[CrossRef]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photonics Nanostruct. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

2006 (2)

2005 (3)

Z. Zalevsky and A. Rudnitsky, “Nano photonic and ultra fast all-optical processing modules,” Opt. Express 13, 10272–10284 (2005).
[CrossRef] [PubMed]

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1×N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005).
[CrossRef] [PubMed]

Z. Jin, C. J. Kaalund, and G. D. Peng, “Novel approach to design high-performance large-port-count switches in low-index-contrast materials based on cascaded multimode interference couplers,” IEEE J. Quantum Electron. 41, 1548–1551(2005).
[CrossRef]

2004 (1)

M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotechnology 15, S622–S627(2004).
[CrossRef]

2002 (1)

S.-Y. Cho, S.-W. Seo, M. A. Brooke, and N. M. Jokerst, “Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits,” IEEE J. Quantum Electron. 8, 1427–1434 (2002).
[CrossRef]

2001 (1)

L. W. Cahill and F. P. Frank, “Generalized Mach–Zehnder optical switches, WDM and photonic switching devices for network applications,” Proc. SPIE 4289, 113–117 (2001).
[CrossRef]

1997 (1)

1994 (2)

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N×N multi-mode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994).
[CrossRef] [PubMed]

1988 (1)

D. H. Hartman, “Photonic systems interconnections—overcoming the high speed electronics bottleneck,” Microelectron. Int. 5, 12–18 (1988).
[CrossRef]

Arakawa, Y.

Bachmann, M.

Besse, P. A.

Birbeck, J. C. H.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

Brooke, M. A.

S.-Y. Cho, S.-W. Seo, M. A. Brooke, and N. M. Jokerst, “Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits,” IEEE J. Quantum Electron. 8, 1427–1434 (2002).
[CrossRef]

Cahill, L. W.

L. W. Cahill and T. T. Le, “The design of signal processing devices employing SOI MMI couplers,” Proc. SPIE 7220, 7220031 (2009).
[CrossRef]

L. W. Cahill and F. P. Frank, “Generalized Mach–Zehnder optical switches, WDM and photonic switching devices for network applications,” Proc. SPIE 4289, 113–117 (2001).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photonics Nanostruct. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

Chen, Z.

Cho, S.-Y.

S.-Y. Cho, S.-W. Seo, M. A. Brooke, and N. M. Jokerst, “Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits,” IEEE J. Quantum Electron. 8, 1427–1434 (2002).
[CrossRef]

Chu, T.

Cincotti, G.

Dagli, N.

Fang, Q.

Frank, F. P.

L. W. Cahill and F. P. Frank, “Generalized Mach–Zehnder optical switches, WDM and photonic switching devices for network applications,” Proc. SPIE 4289, 113–117 (2001).
[CrossRef]

Hartman, D. H.

D. H. Hartman, “Photonic systems interconnections—overcoming the high speed electronics bottleneck,” Microelectron. Int. 5, 12–18 (1988).
[CrossRef]

Heaton, J. M.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

Hilton, K. P.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

Ishida, S.

Jenkins, R. M.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

Jiang, X. Q.

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach–Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

H. F. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Steering light into logic patterns with two-dimensional cascaded multimode waveguide,” Chin. Phys. 16, 740–745 (2007).
[CrossRef]

Jin, Z.

Z. Jin, C. J. Kaalund, and G. D. Peng, “Novel approach to design high-performance large-port-count switches in low-index-contrast materials based on cascaded multimode interference couplers,” IEEE J. Quantum Electron. 41, 1548–1551(2005).
[CrossRef]

Jokerst, N. M.

S.-Y. Cho, S.-W. Seo, M. A. Brooke, and N. M. Jokerst, “Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits,” IEEE J. Quantum Electron. 8, 1427–1434 (2002).
[CrossRef]

Kaalund, C. J.

Z. Jin, C. J. Kaalund, and G. D. Peng, “Novel approach to design high-performance large-port-count switches in low-index-contrast materials based on cascaded multimode interference couplers,” IEEE J. Quantum Electron. 41, 1548–1551(2005).
[CrossRef]

Kishore, K. L.

E. S. Rao, M. Satyam, and K. L.Kishore, “Universal electro-optical hybrid logic gates,” Semicond. Phys. Quantum Electron. Optoelectron. 11, 96–100 (2008).

Kitayama, K.-I.

Kuo, J. B.

J. B. Kuo and S. C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits (Wiley, 2001).

Kwong, D. L.

Le, T. T.

L. W. Cahill and T. T. Le, “The design of signal processing devices employing SOI MMI couplers,” Proc. SPIE 7220, 7220031 (2009).
[CrossRef]

Li, B.

Li, Z.

Lin, S. C.

J. B. Kuo and S. C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits (Wiley, 2001).

Liow, T. Y.

Lipson, M.

M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotechnology 15, S622–S627(2004).
[CrossRef]

Lo, G. Q.

MacDonald, R. I.

Melchior, H.

Paiam, M. R.

Parker, J. T.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

Peng, G. D.

Z. Jin, C. J. Kaalund, and G. D. Peng, “Novel approach to design high-performance large-port-count switches in low-index-contrast materials based on cascaded multimode interference couplers,” IEEE J. Quantum Electron. 41, 1548–1551(2005).
[CrossRef]

Rao, E. S.

E. S. Rao, M. Satyam, and K. L.Kishore, “Universal electro-optical hybrid logic gates,” Semicond. Phys. Quantum Electron. Optoelectron. 11, 96–100 (2008).

Rudnitsky, A.

Sarantos, C. H.

Satyam, M.

E. S. Rao, M. Satyam, and K. L.Kishore, “Universal electro-optical hybrid logic gates,” Semicond. Phys. Quantum Electron. Optoelectron. 11, 96–100 (2008).

Seo, S.-W.

S.-Y. Cho, S.-W. Seo, M. A. Brooke, and N. M. Jokerst, “Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits,” IEEE J. Quantum Electron. 8, 1427–1434 (2002).
[CrossRef]

Smith, G. W.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

Song, J. F.

Soref, R. A.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photonics Nanostruct. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

Tao, S. H.

Tucker, R. S.

R. S. Tucker, “The roles of optics in computing,” Nat. Photon. 4, 405 (2010).
[CrossRef]

Vikram, C. S.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photonics Nanostruct. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

Wada, N.

Wang, M. H.

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach–Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

H. F. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Steering light into logic patterns with two-dimensional cascaded multimode waveguide,” Chin. Phys. 16, 740–745 (2007).
[CrossRef]

Wang, W. J.

Wight, D. R.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

Yamada, H.

Yang, J. Y.

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach–Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

H. F. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Steering light into logic patterns with two-dimensional cascaded multimode waveguide,” Chin. Phys. 16, 740–745 (2007).
[CrossRef]

Yu, M. B.

Zalevsky, Z.

Zhao, Y.

Zhou, H. F.

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach–Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

H. F. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Steering light into logic patterns with two-dimensional cascaded multimode waveguide,” Chin. Phys. 16, 740–745 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[CrossRef]

Chin. Phys. (1)

H. F. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Steering light into logic patterns with two-dimensional cascaded multimode waveguide,” Chin. Phys. 16, 740–745 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

Z. Jin, C. J. Kaalund, and G. D. Peng, “Novel approach to design high-performance large-port-count switches in low-index-contrast materials based on cascaded multimode interference couplers,” IEEE J. Quantum Electron. 41, 1548–1551(2005).
[CrossRef]

S.-Y. Cho, S.-W. Seo, M. A. Brooke, and N. M. Jokerst, “Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits,” IEEE J. Quantum Electron. 8, 1427–1434 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Microelectron. Int. (1)

D. H. Hartman, “Photonic systems interconnections—overcoming the high speed electronics bottleneck,” Microelectron. Int. 5, 12–18 (1988).
[CrossRef]

Nanotechnology (1)

M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotechnology 15, S622–S627(2004).
[CrossRef]

Nat. Photon. (1)

R. S. Tucker, “The roles of optics in computing,” Nat. Photon. 4, 405 (2010).
[CrossRef]

Opt. Express (6)

Photonics Nanostruct. Fundam. Appl. (1)

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photonics Nanostruct. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

Proc. SPIE (2)

L. W. Cahill and T. T. Le, “The design of signal processing devices employing SOI MMI couplers,” Proc. SPIE 7220, 7220031 (2009).
[CrossRef]

L. W. Cahill and F. P. Frank, “Generalized Mach–Zehnder optical switches, WDM and photonic switching devices for network applications,” Proc. SPIE 4289, 113–117 (2001).
[CrossRef]

Semicond. Phys. Quantum Electron. Optoelectron. (1)

E. S. Rao, M. Satyam, and K. L.Kishore, “Universal electro-optical hybrid logic gates,” Semicond. Phys. Quantum Electron. Optoelectron. 11, 96–100 (2008).

Other (1)

J. B. Kuo and S. C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the I-E MMI coupler with N access waveguides at all sides. On the image-extended arms, two series of electrode connections are correspondent to the constant phase shifters and biasing phase shifters, respectively. The input, linking, and output waveguides are denoted by j, k, and l, respectively, and numbered from N to 1.

Fig. 2
Fig. 2

Schematics of the E-to-O decoder based on the I-E MMI coupler, where two CMOS inverters are introduced to drive the two heaters.

Fig. 3
Fig. 3

Optical simulation of four operation states of the decoder. (a) Initial state 1 1 , (b)  1 2 when heater 1 works; (c)  1 4 when heater 2 works; (d)  1 3 when both heaters work. Parameters for simulation: length of the bent waveguide is 50 μm ; width of the MMI region is 8 μm . Adjacent linking arms have a spacing of 3.5 μm . The arms for simulation have lengths of 200 μm .

Tables (2)

Tables Icon

Table 1 Electrical-to-Optical ADC

Tables Icon

Table 2 Logic Outputs of the Decoder with Different Controlling Signals

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ j k = ϕ 0 π 2 ( 1 ) ( j + k + N ) π 4 N × [ ( 1 ) j ( j 1 2 ) ( 1 ) N + k ( k 1 2 ) ] 2 ,
[ E l O ] N × 1 = 1 N [ exp ( i ϕ k l ) ] N × N diag [ exp ( i φ k A + i φ k l B ) ] N × N 1 N [ exp ( i ϕ j k ) ] N × N [ E j I ] N × 1 ,
φ k A = ( ϕ j 0 , k a + ϕ k a , l 0 ) ( ϕ j 0 , k + ϕ k , l 0 ) ,
φ k , l B = ( ϕ k , l 0 ϕ k 0 , l 0 ) ( ϕ k , l ϕ k 0 , l ) = π ( 1 ) N 2 { [ ( 1 ) k + l 0 ( 1 ) k 0 + l 0 ( 1 ) k + l + ( 1 ) k 0 + l ] [ ( 1 ) k ( k 1 2 ) ( 1 ) k 0 ( k 0 1 2 ) ] [ ( 1 ) l 0 ( l 0 1 2 ) ( 1 ) l ( l 1 2 ) ] } .
[ φ k l B ] N × N = [ φ 1 , 1 B φ 1 , l B φ 1 , l 0 B = 0 φ 1 , l c B φ 1 , N B 0 φ k , 1 B φ k , l B φ k , l 0 B = 0 φ k , l c B φ k , N B 0 φ k b , 1 B = 0 0 φ k b , l B = 0 0 φ k b , l 0 B = 0 0 φ k b , l c B = 0 0 φ k b , N B = 0 0 φ N , 1 B φ N , l B φ N , l 0 B = 0 φ N , l c B φ N , N B ] ,
φ k l B + 2 π A k l φ k l B + 2 π A k l = φ k l B + 2 π A k l φ k l B + 2 π A k l for all     k , k , l , l ,

Metrics