Abstract

Hybrid waveguides consisting of a metal plane separated from a high-index medium by a low-index spacer have recently attracted a lot of interest. TM and TE modes are guided in two different layers in these structures and their properties can be controlled in different manners by changing the waveguide dimensions and material properties. We examine the effects of different parameters on the characteristics of the two modes in such structures. We show that by properly choosing the dimensions, it is possible to cut off the TE mode while the TM mode can still be guided in a well-confined manner. Using this property of the hybrid guide, we propose a TM-pass polarizer. The proposed device is very compact and compatible with the silicon-on-insulator platform. Finite-difference time-domain simulation indicates that such a polarizer can provide a high extinction of the TE mode for a reasonable insertion loss of the TM mode.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [CrossRef] [PubMed]
  3. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
    [CrossRef]
  4. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structure,” Opt. Express 15, 176–182 (2007).
    [CrossRef] [PubMed]
  5. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387(2010).
    [CrossRef]
  6. Q. Wang and S.-T. Ho, “Ultra compact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
    [CrossRef]
  7. Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
    [CrossRef]
  8. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mijahedi, “Super mode propagation in low index medium,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2010).
    [PubMed]
  9. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mijahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
    [CrossRef] [PubMed]
  10. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of sub-wavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photonics Technol. Lett. 21, 362–364 (2009).
    [CrossRef]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
    [CrossRef]
  12. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [CrossRef] [PubMed]
  13. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  14. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  15. FDTD Solutions Reference Guide (Lumerical Solutions2009).
  16. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
    [CrossRef]

2010 (4)

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387(2010).
[CrossRef]

Q. Wang and S.-T. Ho, “Ultra compact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
[CrossRef]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mijahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of sub-wavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photonics Technol. Lett. 21, 362–364 (2009).
[CrossRef]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[CrossRef] [PubMed]

2008 (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
[CrossRef]

2007 (2)

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structure,” Opt. Express 15, 176–182 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aitchison, J. S.

Alam, M. Z.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Berini, P.

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387(2010).
[CrossRef]

Bowers, J. E.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cohen, O.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
[CrossRef]

Cui, Y.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
[CrossRef]

Dai, D.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Fang, A. W.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
[CrossRef]

Freude, W.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of sub-wavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photonics Technol. Lett. 21, 362–364 (2009).
[CrossRef]

Fujii, M.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of sub-wavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photonics Technol. Lett. 21, 362–364 (2009).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

He, S.

Ho, S.-T.

Q. Wang and S.-T. Ho, “Ultra compact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
[CrossRef]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jones, R.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
[CrossRef]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

Lee, J.-B.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
[CrossRef]

Leon, I. D.

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387(2010).
[CrossRef]

Leuthold, J.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of sub-wavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photonics Technol. Lett. 21, 362–364 (2009).
[CrossRef]

Meier, J.

Mijahedi, M.

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mijahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mijahedi, “Super mode propagation in low index medium,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2010).
[PubMed]

Mojahedi, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Paniccia, M. J.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
[CrossRef]

Park, H.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
[CrossRef]

Park, W.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Schonbrun, E.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Tinker, M.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
[CrossRef]

Wang, Q.

Q. Wang and S.-T. Ho, “Ultra compact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
[CrossRef]

Wu, Q.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

IEEE Photon. J. (1)

Q. Wang and S.-T. Ho, “Ultra compact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photonics Technol. Lett. 20, 641–643 (2008).
[CrossRef]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19, 230–232 (2007).
[CrossRef]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of sub-wavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photonics Technol. Lett. 21, 362–364 (2009).
[CrossRef]

Nat. Photon. (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387(2010).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Other (3)

FDTD Solutions Reference Guide (Lumerical Solutions2009).

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mijahedi, “Super mode propagation in low index medium,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2010).
[PubMed]

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Cross section of the hybrid waveguide. (b) Electric field intensity for TM mode. (c) Electric field intensity for TE mode. Waveguide dimensions are w = 350 nm , t = 200 nm , h = 150 nm , d = 150 nm , T = 2 μm . Wavelength of operation is 1550 nm and the spacer is silica.

Fig. 2
Fig. 2

Effect of varying spacer permittivity ( ε spacer ) on effective mode index ( N eff ) and propagation distance for the TM mode. Waveguide dimensions are w = 350 nm , t = 200 nm , h = 100 nm , d = 100 nm and T = 2 μm .

Fig. 3
Fig. 3

(a) and (b): Variations of effective mode index ( N eff ) for TM and TE modes with spacer thickness (h) for a number of fixed silicon thicknesses (d). Other dimensions are w = 350 nm , t = 200 nm , T = 2 μm . Wavelength of operation is 1.55 μm .

Fig. 4
Fig. 4

(a) and (b): Variations of propagation distance for TM and TE modes with spacer thickness (h) for a number of fixed silicon thicknesses (d). Other dimensions are w = 350 nm , t = 200 nm , T = 2 μm . Wavelength of operation is 1.55 μm .

Fig. 5
Fig. 5

Variations of electric field intensity for the TM mode with spacer thickness h. (a)  h = 150 nm , (b)  h = 100 nm , (c)  h = 50 nm . The other dimensions are w = 350 nm , t = 200 nm , d = 150 nm , T = 2 μm . Wavelength of operation is 1.55 μm .

Fig. 6
Fig. 6

Variations of electric field intensity for the TE mode with spacer thickness h. (a)  h = 150 nm , (b)  h = 100 nm , (c)  h = 50 nm . The other dimensions are w = 350 nm , t = 200 nm , d = 150 nm , T = 2 μm . Wavelength of operation is 1.55 μm .

Fig. 7
Fig. 7

(a) Three-dimensional schematic of the complete TM polarizer. (b) Cross section of the hybrid section. (c) Cross section of the input and output silicon waveguides. The coordinate system is defined with respect to (b) and (c) with the x z plane coinciding with the silicon waveguide-buried oxide interface and its origin located at the beginning of the hybrid waveguide section.

Fig. 8
Fig. 8

Electric field intensity plot for the light propagating through the polarizer. (a) TM mode, (b) TE mode for the TM-pass polarizer. Device dimensions are w = 350 nm , t = 200 nm , h = 50 nm , d = 100 nm , T = 1 μm . Dimensions of input and output waveguides are D = 350 nm and H = 300 nm . Spacer is silica. Wavelength of operation is 1.55 μm .

Fig. 9
Fig. 9

Insertion losses of the TM-pass polarizer for two different buried oxide thicknesses. (a) TM mode, (b) TE mode. Device dimensions are w = 350 nm , t = 200 nm , h = 50 nm , d = 100 nm . Spacer is silica. Dimensions of input and output waveguides are D = 350 nm and H = 300 nm . Spacer is silica. Wavelength of operation is 1.55 μm .

Metrics