Abstract

Computer vision, despite all the recent progress, still cannot be employed technically in most hazardous and harsh industrial areas. Most of the alternative solutions to this modern issue are usually unavailable mainly due to the global visual inspection solution cost. The best suitable option is the use of an incoherent optical fiber bundle (IOFB) that obviously requires a calibration step before image transmission purpose. We already presented our contribution to this topic improving the calibration method of the IOFB for image transmission, with some additional and essential steps that considerably improve the reconstructed image quality while also drastically reducing the processing time needed. We also proposed and evaluated a new full-resolution calibration method in a very recent study. We present and discuss in this paper an application using the IOFB for robot guiding in hazardous areas, based on a stereoscopic vision system. Conclusions compare the low- and full-resolution IOFB calibration methods for the depicted application and introduce some advantages of a specially designed IOFB that could perfectly fit with some industrial applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Demuynck and J. M. Menéndez, “Incoherent optical fiber bundle calibration for image transmission: faster, finer, and higher resolution image reconstruction,” Opt. Eng. 50, 033601 (2011).
    [CrossRef]
  2. M. J. Tsai, J. S. Smith, and J. Lucas, “Multi-fibre calibration of incoherent optical fibre bundles for image transmission,” Trans. Inst. Meas. Control 15, 260–268 (1993).
    [CrossRef]
  3. J. Gamo, O. Demuynck, Ó. Esteban, J. L. Lázaro, and A. Cubillo, “Calibration of incoherent optical-fiber-bundles for image transmission purposes,” presented at the IADAT International Conference on Multimedia, Image Processing, and Computer Vision, Madrid, Spain, April 2005.
  4. O. Demuynck, Ó. Esteban, J. L. Lázaro, J. Gamo, and Á. Cubillo, “Transmisión de imagen por medio de un mazo de fibra óptica incoherente,” presented at OPTOEL’05, Alicante, Spain, July 2005.
  5. S. B. McGowan, “Method and apparatus for using non-coherent optical bundles for image transmission,” Intel Corporation, U.S. patent 6,524,237 (25 February 2003).
  6. H. E. Roberts, C. P. DePlachett, B. E. Deason, R. A. Pilgrim, and H. S. Sanford, “Robust incoherent fiber optic bundle decoder,” SRS Technologies, U.S. patent 6,587,189 (1 July 2003).
  7. D. G. Francis, P. A. Beck, and T. A. James, “Visual image transmission by fibre optic cable,” the Secretary of State for defense in her Britannic majesty’s government of the United Kingdom of Great Britain and Northern Ireland, international publication number WO 91/06881 (16 May 1991).
  8. S. Zivanovic, J. Elazar, and M. Tomic, “Fibre-optic displacement sensor,” in Vol. 2 of Proceedings of the 21st International Conference on Microelectronics (IEEE, 1997), pp. 561–564.
    [CrossRef]
  9. S. C. Bates, R. S. F. Chang, “High-temperature fibre optic imaging,” Fiber Integr. Opt. 16, 387–405 (1997).
    [CrossRef]
  10. O. Demuynck, “Optimized and quality improved incoherent optical fiber bundle calibration method for image transmission,” in ISCGAV’08 Proceedings of the 8th Conference on Signal Processing, Computational Geometry and Artificial Vision (World Scientific and Engineering Academy and Society, 2008), pp. 73–78.
  11. O. Demuynck and J. M. Menéndez, “Image transmission through incoherent optical fiber bundle: methods for optimization and image quality improvement,” WSEA Trans. Signal Process. 4, 531–541 (2008).
  12. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2004).
    [CrossRef]
  13. O. Faugeras and Q.-T. Luong, The Geometry of Multiple Images (MIT, 2004).
  14. J.-Y. Bouguet, Camera calibration toolbox for Matlab, available at http://www.vision.caltech.edu/bouguetj/calib_doc/.
  15. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2002).
  16. R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM 15, 11–15 (1972).
    [CrossRef]
  17. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
    [CrossRef]
  18. T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern. 8, 630–632 (1978).
    [CrossRef]

2011 (1)

O. Demuynck and J. M. Menéndez, “Incoherent optical fiber bundle calibration for image transmission: faster, finer, and higher resolution image reconstruction,” Opt. Eng. 50, 033601 (2011).
[CrossRef]

2008 (1)

O. Demuynck and J. M. Menéndez, “Image transmission through incoherent optical fiber bundle: methods for optimization and image quality improvement,” WSEA Trans. Signal Process. 4, 531–541 (2008).

1997 (1)

S. C. Bates, R. S. F. Chang, “High-temperature fibre optic imaging,” Fiber Integr. Opt. 16, 387–405 (1997).
[CrossRef]

1993 (1)

M. J. Tsai, J. S. Smith, and J. Lucas, “Multi-fibre calibration of incoherent optical fibre bundles for image transmission,” Trans. Inst. Meas. Control 15, 260–268 (1993).
[CrossRef]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
[CrossRef]

1978 (1)

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern. 8, 630–632 (1978).
[CrossRef]

1972 (1)

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM 15, 11–15 (1972).
[CrossRef]

Bates, S. C.

S. C. Bates, R. S. F. Chang, “High-temperature fibre optic imaging,” Fiber Integr. Opt. 16, 387–405 (1997).
[CrossRef]

Beck, P. A.

D. G. Francis, P. A. Beck, and T. A. James, “Visual image transmission by fibre optic cable,” the Secretary of State for defense in her Britannic majesty’s government of the United Kingdom of Great Britain and Northern Ireland, international publication number WO 91/06881 (16 May 1991).

Bouguet, J.-Y.

J.-Y. Bouguet, Camera calibration toolbox for Matlab, available at http://www.vision.caltech.edu/bouguetj/calib_doc/.

Calvard, S.

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern. 8, 630–632 (1978).
[CrossRef]

Chang, R. S. F.

S. C. Bates, R. S. F. Chang, “High-temperature fibre optic imaging,” Fiber Integr. Opt. 16, 387–405 (1997).
[CrossRef]

Cubillo, A.

J. Gamo, O. Demuynck, Ó. Esteban, J. L. Lázaro, and A. Cubillo, “Calibration of incoherent optical-fiber-bundles for image transmission purposes,” presented at the IADAT International Conference on Multimedia, Image Processing, and Computer Vision, Madrid, Spain, April 2005.

Cubillo, Á.

O. Demuynck, Ó. Esteban, J. L. Lázaro, J. Gamo, and Á. Cubillo, “Transmisión de imagen por medio de un mazo de fibra óptica incoherente,” presented at OPTOEL’05, Alicante, Spain, July 2005.

Deason, B. E.

H. E. Roberts, C. P. DePlachett, B. E. Deason, R. A. Pilgrim, and H. S. Sanford, “Robust incoherent fiber optic bundle decoder,” SRS Technologies, U.S. patent 6,587,189 (1 July 2003).

Demuynck, O.

O. Demuynck and J. M. Menéndez, “Incoherent optical fiber bundle calibration for image transmission: faster, finer, and higher resolution image reconstruction,” Opt. Eng. 50, 033601 (2011).
[CrossRef]

O. Demuynck and J. M. Menéndez, “Image transmission through incoherent optical fiber bundle: methods for optimization and image quality improvement,” WSEA Trans. Signal Process. 4, 531–541 (2008).

O. Demuynck, “Optimized and quality improved incoherent optical fiber bundle calibration method for image transmission,” in ISCGAV’08 Proceedings of the 8th Conference on Signal Processing, Computational Geometry and Artificial Vision (World Scientific and Engineering Academy and Society, 2008), pp. 73–78.

O. Demuynck, Ó. Esteban, J. L. Lázaro, J. Gamo, and Á. Cubillo, “Transmisión de imagen por medio de un mazo de fibra óptica incoherente,” presented at OPTOEL’05, Alicante, Spain, July 2005.

J. Gamo, O. Demuynck, Ó. Esteban, J. L. Lázaro, and A. Cubillo, “Calibration of incoherent optical-fiber-bundles for image transmission purposes,” presented at the IADAT International Conference on Multimedia, Image Processing, and Computer Vision, Madrid, Spain, April 2005.

DePlachett, C. P.

H. E. Roberts, C. P. DePlachett, B. E. Deason, R. A. Pilgrim, and H. S. Sanford, “Robust incoherent fiber optic bundle decoder,” SRS Technologies, U.S. patent 6,587,189 (1 July 2003).

Duda, R. O.

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM 15, 11–15 (1972).
[CrossRef]

Elazar, J.

S. Zivanovic, J. Elazar, and M. Tomic, “Fibre-optic displacement sensor,” in Vol. 2 of Proceedings of the 21st International Conference on Microelectronics (IEEE, 1997), pp. 561–564.
[CrossRef]

Esteban, Ó.

J. Gamo, O. Demuynck, Ó. Esteban, J. L. Lázaro, and A. Cubillo, “Calibration of incoherent optical-fiber-bundles for image transmission purposes,” presented at the IADAT International Conference on Multimedia, Image Processing, and Computer Vision, Madrid, Spain, April 2005.

O. Demuynck, Ó. Esteban, J. L. Lázaro, J. Gamo, and Á. Cubillo, “Transmisión de imagen por medio de un mazo de fibra óptica incoherente,” presented at OPTOEL’05, Alicante, Spain, July 2005.

Faugeras, O.

O. Faugeras and Q.-T. Luong, The Geometry of Multiple Images (MIT, 2004).

Francis, D. G.

D. G. Francis, P. A. Beck, and T. A. James, “Visual image transmission by fibre optic cable,” the Secretary of State for defense in her Britannic majesty’s government of the United Kingdom of Great Britain and Northern Ireland, international publication number WO 91/06881 (16 May 1991).

Gamo, J.

J. Gamo, O. Demuynck, Ó. Esteban, J. L. Lázaro, and A. Cubillo, “Calibration of incoherent optical-fiber-bundles for image transmission purposes,” presented at the IADAT International Conference on Multimedia, Image Processing, and Computer Vision, Madrid, Spain, April 2005.

O. Demuynck, Ó. Esteban, J. L. Lázaro, J. Gamo, and Á. Cubillo, “Transmisión de imagen por medio de un mazo de fibra óptica incoherente,” presented at OPTOEL’05, Alicante, Spain, July 2005.

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2002).

Hart, P. E.

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM 15, 11–15 (1972).
[CrossRef]

Hartley, R.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2004).
[CrossRef]

James, T. A.

D. G. Francis, P. A. Beck, and T. A. James, “Visual image transmission by fibre optic cable,” the Secretary of State for defense in her Britannic majesty’s government of the United Kingdom of Great Britain and Northern Ireland, international publication number WO 91/06881 (16 May 1991).

Lázaro, J. L.

J. Gamo, O. Demuynck, Ó. Esteban, J. L. Lázaro, and A. Cubillo, “Calibration of incoherent optical-fiber-bundles for image transmission purposes,” presented at the IADAT International Conference on Multimedia, Image Processing, and Computer Vision, Madrid, Spain, April 2005.

O. Demuynck, Ó. Esteban, J. L. Lázaro, J. Gamo, and Á. Cubillo, “Transmisión de imagen por medio de un mazo de fibra óptica incoherente,” presented at OPTOEL’05, Alicante, Spain, July 2005.

Lucas, J.

M. J. Tsai, J. S. Smith, and J. Lucas, “Multi-fibre calibration of incoherent optical fibre bundles for image transmission,” Trans. Inst. Meas. Control 15, 260–268 (1993).
[CrossRef]

Luong, Q.-T.

O. Faugeras and Q.-T. Luong, The Geometry of Multiple Images (MIT, 2004).

McGowan, S. B.

S. B. McGowan, “Method and apparatus for using non-coherent optical bundles for image transmission,” Intel Corporation, U.S. patent 6,524,237 (25 February 2003).

Menéndez, J. M.

O. Demuynck and J. M. Menéndez, “Incoherent optical fiber bundle calibration for image transmission: faster, finer, and higher resolution image reconstruction,” Opt. Eng. 50, 033601 (2011).
[CrossRef]

O. Demuynck and J. M. Menéndez, “Image transmission through incoherent optical fiber bundle: methods for optimization and image quality improvement,” WSEA Trans. Signal Process. 4, 531–541 (2008).

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
[CrossRef]

Pilgrim, R. A.

H. E. Roberts, C. P. DePlachett, B. E. Deason, R. A. Pilgrim, and H. S. Sanford, “Robust incoherent fiber optic bundle decoder,” SRS Technologies, U.S. patent 6,587,189 (1 July 2003).

Ridler, T. W.

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern. 8, 630–632 (1978).
[CrossRef]

Roberts, H. E.

H. E. Roberts, C. P. DePlachett, B. E. Deason, R. A. Pilgrim, and H. S. Sanford, “Robust incoherent fiber optic bundle decoder,” SRS Technologies, U.S. patent 6,587,189 (1 July 2003).

Sanford, H. S.

H. E. Roberts, C. P. DePlachett, B. E. Deason, R. A. Pilgrim, and H. S. Sanford, “Robust incoherent fiber optic bundle decoder,” SRS Technologies, U.S. patent 6,587,189 (1 July 2003).

Smith, J. S.

M. J. Tsai, J. S. Smith, and J. Lucas, “Multi-fibre calibration of incoherent optical fibre bundles for image transmission,” Trans. Inst. Meas. Control 15, 260–268 (1993).
[CrossRef]

Tomic, M.

S. Zivanovic, J. Elazar, and M. Tomic, “Fibre-optic displacement sensor,” in Vol. 2 of Proceedings of the 21st International Conference on Microelectronics (IEEE, 1997), pp. 561–564.
[CrossRef]

Tsai, M. J.

M. J. Tsai, J. S. Smith, and J. Lucas, “Multi-fibre calibration of incoherent optical fibre bundles for image transmission,” Trans. Inst. Meas. Control 15, 260–268 (1993).
[CrossRef]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2002).

Zisserman, A.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2004).
[CrossRef]

Zivanovic, S.

S. Zivanovic, J. Elazar, and M. Tomic, “Fibre-optic displacement sensor,” in Vol. 2 of Proceedings of the 21st International Conference on Microelectronics (IEEE, 1997), pp. 561–564.
[CrossRef]

Commun. ACM (1)

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM 15, 11–15 (1972).
[CrossRef]

Fiber Integr. Opt. (1)

S. C. Bates, R. S. F. Chang, “High-temperature fibre optic imaging,” Fiber Integr. Opt. 16, 387–405 (1997).
[CrossRef]

IEEE Trans. Syst. Man Cybern. (2)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
[CrossRef]

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern. 8, 630–632 (1978).
[CrossRef]

Opt. Eng. (1)

O. Demuynck and J. M. Menéndez, “Incoherent optical fiber bundle calibration for image transmission: faster, finer, and higher resolution image reconstruction,” Opt. Eng. 50, 033601 (2011).
[CrossRef]

Trans. Inst. Meas. Control (1)

M. J. Tsai, J. S. Smith, and J. Lucas, “Multi-fibre calibration of incoherent optical fibre bundles for image transmission,” Trans. Inst. Meas. Control 15, 260–268 (1993).
[CrossRef]

WSEA Trans. Signal Process. (1)

O. Demuynck and J. M. Menéndez, “Image transmission through incoherent optical fiber bundle: methods for optimization and image quality improvement,” WSEA Trans. Signal Process. 4, 531–541 (2008).

Other (11)

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2004).
[CrossRef]

O. Faugeras and Q.-T. Luong, The Geometry of Multiple Images (MIT, 2004).

J.-Y. Bouguet, Camera calibration toolbox for Matlab, available at http://www.vision.caltech.edu/bouguetj/calib_doc/.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2002).

O. Demuynck, “Optimized and quality improved incoherent optical fiber bundle calibration method for image transmission,” in ISCGAV’08 Proceedings of the 8th Conference on Signal Processing, Computational Geometry and Artificial Vision (World Scientific and Engineering Academy and Society, 2008), pp. 73–78.

J. Gamo, O. Demuynck, Ó. Esteban, J. L. Lázaro, and A. Cubillo, “Calibration of incoherent optical-fiber-bundles for image transmission purposes,” presented at the IADAT International Conference on Multimedia, Image Processing, and Computer Vision, Madrid, Spain, April 2005.

O. Demuynck, Ó. Esteban, J. L. Lázaro, J. Gamo, and Á. Cubillo, “Transmisión de imagen por medio de un mazo de fibra óptica incoherente,” presented at OPTOEL’05, Alicante, Spain, July 2005.

S. B. McGowan, “Method and apparatus for using non-coherent optical bundles for image transmission,” Intel Corporation, U.S. patent 6,524,237 (25 February 2003).

H. E. Roberts, C. P. DePlachett, B. E. Deason, R. A. Pilgrim, and H. S. Sanford, “Robust incoherent fiber optic bundle decoder,” SRS Technologies, U.S. patent 6,587,189 (1 July 2003).

D. G. Francis, P. A. Beck, and T. A. James, “Visual image transmission by fibre optic cable,” the Secretary of State for defense in her Britannic majesty’s government of the United Kingdom of Great Britain and Northern Ireland, international publication number WO 91/06881 (16 May 1991).

S. Zivanovic, J. Elazar, and M. Tomic, “Fibre-optic displacement sensor,” in Vol. 2 of Proceedings of the 21st International Conference on Microelectronics (IEEE, 1997), pp. 561–564.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Example of image transmission through the IOFB. (a) Original image at the input plane. (b) Received image at the output plane.

Fig. 2
Fig. 2

Summary chart for IOFB calibration improvement as described in [9, 10].

Fig. 3
Fig. 3

Adapted calibration hardware setup for stereoscopic IOFB application.

Fig. 4
Fig. 4

System modeling for intrinsic parameter computing.

Fig. 5
Fig. 5

Diagram for virtual calibration pattern correction.

Fig. 6
Fig. 6

Virtual calibration pattern correction process. (a) Original low-resolution reconstructed image, observing the chessboard calibration pattern. (b)  3   bit coded color infor mation. (c) Dilated edge and Hough transform for line detection. (d) Binarized image for refining the low-resolution positions.

Fig. 7
Fig. 7

Virtual calibration pattern correction result for high-resolution final result.

Fig. 8
Fig. 8

Rigid motion transformation representation.

Fig. 9
Fig. 9

Extrinsic parameters result of the stereo calibration.

Fig. 10
Fig. 10

Rigid distribution of simulated robot marks.

Fig. 11
Fig. 11

Diagram of robot marks extraction and stereoscopic association.

Fig. 12
Fig. 12

Trajectory of the simulated robot observed on the LCD screen.

Fig. 13
Fig. 13

Video sequence 3D reconstruction for three different screen positions.

Fig. 14
Fig. 14

Video sequence 3D reconstruction in full (green crosses) and low (red crosses) resolution, both compared to the original trajectory (black line).

Fig. 15
Fig. 15

Detected 2D robot trajectory observed in the left reconstructed images. (a) Low-resolution case (pixel coordinates multiplied by the reconstructed images size scaling factor), (b) full-resolution case.

Fig. 16
Fig. 16

Color associated superposed detected 2D robot trajectories, observed in the left reconstructed image in the full-resolution (crosses), low-resolution (triangles), and real (circles) cases.

Fig. 17
Fig. 17

Two-dimensional/three-dimensional error distance measurement over the trajectory using the full-resolution method.

Fig. 18
Fig. 18

Two-dimensional/three-dimensional error distance measurement over the trajectory, using the low- resolution method.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ x ITS = ( x r i x 0 ) × d x y ITS = ( y r i y 0 ) × d y z ITS = f .
P ITS = R P o + T ,
X R = R X L + T ,
k l × P l k r × ( R P r ) = k × cross ( P l , R P r ) ,
P 3 D = k l × P l k r × ( R P r ) + T 2 .
Dist2D_Error = PixelSize × ( x real x onScreen ) 2 + ( y real y onScreen ) 2 ,
Dist3D_Error = ( x real x reconstructed ) 2 + ( y real y reconstructed ) 2 + ( z real z reconstructed ) 2 .

Metrics