Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser vibrometry from a moving ground vehicle

Not Accessible

Your library or personal account may give you access

Abstract

We investigated the fundamental limits to the performance of a laser vibrometer that is mounted on a moving ground vehicle. The noise floor of a moving laser vibrometer consists of speckle noise, shot noise, and platform vibrations. We showed that speckle noise can be reduced by increasing the laser spot size and that the noise floor is dominated by shot noise at high frequencies (typically greater than a few kilohertz for our system). We built a five-channel, vehicle-mounted, 1.55μm wavelength laser vibrometer to measure its noise floor at 10m horizontal range while driving on dirt roads. The measured noise floor agreed with our theoretical estimates. We showed that, by subtracting the response of an accelerometer and an optical reference channel, we could reduce the excess noise (in units of micrometers per second per Hz1/2) from vehicle vibrations by a factor of up to 33, to obtain nearly speckle-and-shot-noise-limited performance from 0.3 to 47kHz.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Advanced signal processing methods for pulsed laser vibrometry

Julien Totems, Véronique Jolivet, Jean-Philippe Ovarlez, and Nadine Martin
Appl. Opt. 49(20) 3967-3979 (2010)

Measuring vibrational motion from a moving platform using speckle field detection

Brandon Redding and Allen Davis
Appl. Opt. 56(9) 2542-2547 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved