Abstract

We investigated the fundamental limits to the performance of a laser vibrometer that is mounted on a moving ground vehicle. The noise floor of a moving laser vibrometer consists of speckle noise, shot noise, and platform vibrations. We showed that speckle noise can be reduced by increasing the laser spot size and that the noise floor is dominated by shot noise at high frequencies (typically greater than a few kilohertz for our system). We built a five-channel, vehicle-mounted, 1.55μm wavelength laser vibrometer to measure its noise floor at 10m horizontal range while driving on dirt roads. The measured noise floor agreed with our theoretical estimates. We showed that, by subtracting the response of an accelerometer and an optical reference channel, we could reduce the excess noise (in units of micrometers per second per Hz1/2) from vehicle vibrations by a factor of up to 33, to obtain nearly speckle-and-shot-noise-limited performance from 0.3 to 47kHz.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. OYO Geospace Corporation, 7007 Pinemont Drive, Houston, Texas 77040, USA.
  2. PCB Piezotronics, Inc., 3425 Walden Avenue, Depew, New York 14043-2495, USA.
  3. Applied Technology Associates, 1300 Britt Street SE, Albuquerque, NM 87123, USA.
  4. R. Haupt and K. Rolt, “Acoustic detection of hidden objects and material discontinuities,” U.S. patent 7,694,567 (13 April 2010).
  5. H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT&E Int. 38, 213–218(2005).
    [CrossRef]
  6. J. R. Bell and S. J. Rothberg, “Rotational vibration measurements using laser Doppler vibrometry: comprehensive theory and practical application,” J. Sound Vib. 238, 673–690(2000).
    [CrossRef]
  7. J. Sabatier and G. Matalkah, “A study on the passive detection of clandestine tunnels,” in 2008 IEEE Conference on Technologies for Homeland Security, (IEEE, 2008), pp. 353–358.
    [CrossRef]
  8. A. L. Kachelmyer and K. I. Schultz, “Laser vibration sensing,” Linc. Lab. J. 8, 3–28 (1995).
  9. R. Haupt and K. D. Rolt, “Stand-off acoustic-laser technique to locate buried landmines,” Linc. Lab. J. 15, 3–22 (2005).
  10. J. M. Sabatier and N. Xiang, “Laser-Doppler-based acoustic-to-seismic detection of buried mines,” Proc. SPIE 3710, 215–222 (1999).
    [CrossRef]
  11. J. M. Sabatier and N. Xiang, “An investigation of acoustic-to-seismic coupling to detect buried antitank landmines,” IEEE Trans. Geosci. Remote Sens. 39, 1146–1154 (2001).
    [CrossRef]
  12. N. Xiang and J. M. Sabatier, “An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling,” J. Acoust. Soc. Am. 113, 1333–1341 (2003).
    [CrossRef] [PubMed]
  13. B. Libbey, D. Fenneman, and B. Burns, “Mobile platform for acoustic mine detection applications,” Proc. SPIE 5794, 683–693 (2005).
    [CrossRef]
  14. Polytec Laser Vibrometers, 25 South Street, Suite A, Hopkinton, Massachusetts 01748, USA.
  15. MetroLaser, 8 Chrysler, Irvine, California 92618, USA.
  16. T. Writer, J. M. Sabatier, M. A. Miller, and K. D. Sherbondy, “Mine detection with a forward-moving portable laser Doppler vibrometer,” Proc. SPIE 4742, 649–653 (2002).
    [CrossRef]
  17. J. M. Sabatier, “Increased ground vibration measurement speed for landmine detection,” Tech. Rep. ADA514444(University of Mississippi, 2009).
  18. R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
    [CrossRef]
  19. D. N. Barr, C. S. Fox, and J. E. Nettleton, “Stabilized reference surface for laser vibration sensors,” U.S. patent 4,777,825(18 October 1988).
  20. H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003).
    [CrossRef]
  21. C. N. Shen, B. Waeber, L. Girata, and A. R. Lovett, “Project Radiant Outlaw,” Proc. SPIE 2272, 63–74 (1994).
    [CrossRef]
  22. H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.
  23. H. Nguyen and M. Vai, “Rapid prototyping technology,” Linc. Lab. J. 18, 17–27 (2010).
  24. F. M. Gardner, Phaselock Techniques (Wiley, 1979).
  25. V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
    [CrossRef]
  26. P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
    [CrossRef]
  27. D. Letalick, I. Renhorn, O. Steinvall, and J. H. Shapiro, “Noise sources in laser radar systems,” Appl. Opt. 28, 2657–2665 (1989).
    [CrossRef] [PubMed]
  28. J. Totems, V. Jolivet, J.-P. Ovarlez, and N. Martin, “Advanced signal processing methods for pulsed laser vibrometry,” Appl. Opt. 49, 3967–3979 (2010).
    [CrossRef] [PubMed]
  29. K. D. Ridley and E. Jakeman, “Signal-to-noise analysis of FM demodulation in the presence of multiplicative and additive noise,” Signal Process. 80, 1895–1907 (2000).
    [CrossRef]
  30. R. L. Lucke and L. J. Rickard, “Photon-limited synthetic-aperture imaging for planet surface studies,” Appl. Opt. 41, 5084–5095 (2002).
    [CrossRef] [PubMed]
  31. J. W. Goodman, Statistical Optics (Wiley, 1985).
  32. J. H. Shapiro, “Correlation scales of laser speckle in heterodyne detection,” Appl. Opt. 24, 1883–1888 (1985).
    [CrossRef] [PubMed]
  33. C. A. Hill, M. Harris, K. D. Ridley, E. Jakeman, and P. Lutzmann, “Lidar frequency modulation vibrometry in the presence of speckle,” Appl. Opt. 42, 1091–1100 (2003).
    [CrossRef] [PubMed]
  34. A. Dräbenstedt, “Quantification of displacement and velocity noise in vibrometer measurements on transversely moving or rotating surfaces,” Proc. SPIE 6616, 661632 (2007).
    [CrossRef]

2010 (2)

2007 (1)

A. Dräbenstedt, “Quantification of displacement and velocity noise in vibrometer measurements on transversely moving or rotating surfaces,” Proc. SPIE 6616, 661632 (2007).
[CrossRef]

2006 (1)

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
[CrossRef]

2005 (3)

H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT&E Int. 38, 213–218(2005).
[CrossRef]

R. Haupt and K. D. Rolt, “Stand-off acoustic-laser technique to locate buried landmines,” Linc. Lab. J. 15, 3–22 (2005).

B. Libbey, D. Fenneman, and B. Burns, “Mobile platform for acoustic mine detection applications,” Proc. SPIE 5794, 683–693 (2005).
[CrossRef]

2003 (4)

N. Xiang and J. M. Sabatier, “An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling,” J. Acoust. Soc. Am. 113, 1333–1341 (2003).
[CrossRef] [PubMed]

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003).
[CrossRef]

C. A. Hill, M. Harris, K. D. Ridley, E. Jakeman, and P. Lutzmann, “Lidar frequency modulation vibrometry in the presence of speckle,” Appl. Opt. 42, 1091–1100 (2003).
[CrossRef] [PubMed]

2002 (2)

R. L. Lucke and L. J. Rickard, “Photon-limited synthetic-aperture imaging for planet surface studies,” Appl. Opt. 41, 5084–5095 (2002).
[CrossRef] [PubMed]

T. Writer, J. M. Sabatier, M. A. Miller, and K. D. Sherbondy, “Mine detection with a forward-moving portable laser Doppler vibrometer,” Proc. SPIE 4742, 649–653 (2002).
[CrossRef]

2001 (1)

J. M. Sabatier and N. Xiang, “An investigation of acoustic-to-seismic coupling to detect buried antitank landmines,” IEEE Trans. Geosci. Remote Sens. 39, 1146–1154 (2001).
[CrossRef]

2000 (3)

J. R. Bell and S. J. Rothberg, “Rotational vibration measurements using laser Doppler vibrometry: comprehensive theory and practical application,” J. Sound Vib. 238, 673–690(2000).
[CrossRef]

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[CrossRef]

K. D. Ridley and E. Jakeman, “Signal-to-noise analysis of FM demodulation in the presence of multiplicative and additive noise,” Signal Process. 80, 1895–1907 (2000).
[CrossRef]

1999 (1)

J. M. Sabatier and N. Xiang, “Laser-Doppler-based acoustic-to-seismic detection of buried mines,” Proc. SPIE 3710, 215–222 (1999).
[CrossRef]

1995 (1)

A. L. Kachelmyer and K. I. Schultz, “Laser vibration sensing,” Linc. Lab. J. 8, 3–28 (1995).

1994 (1)

C. N. Shen, B. Waeber, L. Girata, and A. R. Lovett, “Project Radiant Outlaw,” Proc. SPIE 2272, 63–74 (1994).
[CrossRef]

1989 (1)

1985 (1)

Anderson, T.

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

Aranchuk, V.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
[CrossRef]

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

Barr, D. N.

D. N. Barr, C. S. Fox, and J. E. Nettleton, “Stabilized reference surface for laser vibration sensors,” U.S. patent 4,777,825(18 October 1988).

Bell, J. R.

J. R. Bell and S. J. Rothberg, “Rotational vibration measurements using laser Doppler vibrometry: comprehensive theory and practical application,” J. Sound Vib. 238, 673–690(2000).
[CrossRef]

Bradley, M. R.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

Bruns, D. L.

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[CrossRef]

Burgett, R. D.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

Burns, B.

B. Libbey, D. Fenneman, and B. Burns, “Mobile platform for acoustic mine detection applications,” Proc. SPIE 5794, 683–693 (2005).
[CrossRef]

Chang, T.-G.

H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003).
[CrossRef]

Davis, J.

H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT&E Int. 38, 213–218(2005).
[CrossRef]

Dräbenstedt, A.

A. Dräbenstedt, “Quantification of displacement and velocity noise in vibrometer measurements on transversely moving or rotating surfaces,” Proc. SPIE 6616, 661632 (2007).
[CrossRef]

Duncan, M.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

Ennis, F.

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

Eskowitz, M.

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

Fenneman, D.

B. Libbey, D. Fenneman, and B. Burns, “Mobile platform for acoustic mine detection applications,” Proc. SPIE 5794, 683–693 (2005).
[CrossRef]

Fox, C. S.

D. N. Barr, C. S. Fox, and J. E. Nettleton, “Stabilized reference surface for laser vibration sensors,” U.S. patent 4,777,825(18 October 1988).

Gardner, F. M.

F. M. Gardner, Phaselock Techniques (Wiley, 1979).

Gatt, P.

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[CrossRef]

Gindy, M.

H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT&E Int. 38, 213–218(2005).
[CrossRef]

Girata, L.

C. N. Shen, B. Waeber, L. Girata, and A. R. Lovett, “Project Radiant Outlaw,” Proc. SPIE 2272, 63–74 (1994).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Harris, M.

Haupt, R.

R. Haupt and K. D. Rolt, “Stand-off acoustic-laser technique to locate buried landmines,” Linc. Lab. J. 15, 3–22 (2005).

R. Haupt and K. Rolt, “Acoustic detection of hidden objects and material discontinuities,” U.S. patent 7,694,567 (13 April 2010).

Heckerling, A.

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

Henderson, S. W.

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[CrossRef]

Hess, C.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
[CrossRef]

Hess, C. F.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

Hill, C. A.

Jakeman, E.

C. A. Hill, M. Harris, K. D. Ridley, E. Jakeman, and P. Lutzmann, “Lidar frequency modulation vibrometry in the presence of speckle,” Appl. Opt. 42, 1091–1100 (2003).
[CrossRef] [PubMed]

K. D. Ridley and E. Jakeman, “Signal-to-noise analysis of FM demodulation in the presence of multiplicative and additive noise,” Signal Process. 80, 1895–1907 (2000).
[CrossRef]

Jolivet, V.

Kachelmyer, A. L.

A. L. Kachelmyer and K. I. Schultz, “Laser vibration sensing,” Linc. Lab. J. 8, 3–28 (1995).

Kang, M.-S.

H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003).
[CrossRef]

Kim, C.

H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003).
[CrossRef]

Kim, H.

H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003).
[CrossRef]

Lal, A.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
[CrossRef]

Lal, A. K.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

Lambert, G.

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

Lee, Y.

H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003).
[CrossRef]

Letalick, D.

Libbey, B.

B. Libbey, D. Fenneman, and B. Burns, “Mobile platform for acoustic mine detection applications,” Proc. SPIE 5794, 683–693 (2005).
[CrossRef]

Lovett, A. R.

C. N. Shen, B. Waeber, L. Girata, and A. R. Lovett, “Project Radiant Outlaw,” Proc. SPIE 2272, 63–74 (1994).
[CrossRef]

Lucke, R. L.

Lutzmann, P.

Martin, N.

Matalkah, G.

J. Sabatier and G. Matalkah, “A study on the passive detection of clandestine tunnels,” in 2008 IEEE Conference on Technologies for Homeland Security, (IEEE, 2008), pp. 353–358.
[CrossRef]

Melton, J.

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

Miller, M. A.

T. Writer, J. M. Sabatier, M. A. Miller, and K. D. Sherbondy, “Mine detection with a forward-moving portable laser Doppler vibrometer,” Proc. SPIE 4742, 649–653 (2002).
[CrossRef]

Nassif, H. H.

H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT&E Int. 38, 213–218(2005).
[CrossRef]

Nettleton, J. E.

D. N. Barr, C. S. Fox, and J. E. Nettleton, “Stabilized reference surface for laser vibration sensors,” U.S. patent 4,777,825(18 October 1988).

Nguyen, H.

H. Nguyen and M. Vai, “Rapid prototyping technology,” Linc. Lab. J. 18, 17–27 (2010).

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

Ovarlez, J.-P.

Renhorn, I.

Retherford, L.

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

Rickard, L. J.

Ridley, K. D.

C. A. Hill, M. Harris, K. D. Ridley, E. Jakeman, and P. Lutzmann, “Lidar frequency modulation vibrometry in the presence of speckle,” Appl. Opt. 42, 1091–1100 (2003).
[CrossRef] [PubMed]

K. D. Ridley and E. Jakeman, “Signal-to-noise analysis of FM demodulation in the presence of multiplicative and additive noise,” Signal Process. 80, 1895–1907 (2000).
[CrossRef]

Rolt, K.

R. Haupt and K. Rolt, “Acoustic detection of hidden objects and material discontinuities,” U.S. patent 7,694,567 (13 April 2010).

Rolt, K. D.

R. Haupt and K. D. Rolt, “Stand-off acoustic-laser technique to locate buried landmines,” Linc. Lab. J. 15, 3–22 (2005).

Rothberg, S. J.

J. R. Bell and S. J. Rothberg, “Rotational vibration measurements using laser Doppler vibrometry: comprehensive theory and practical application,” J. Sound Vib. 238, 673–690(2000).
[CrossRef]

Sabatier, J.

J. Sabatier and G. Matalkah, “A study on the passive detection of clandestine tunnels,” in 2008 IEEE Conference on Technologies for Homeland Security, (IEEE, 2008), pp. 353–358.
[CrossRef]

Sabatier, J. M.

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
[CrossRef]

N. Xiang and J. M. Sabatier, “An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling,” J. Acoust. Soc. Am. 113, 1333–1341 (2003).
[CrossRef] [PubMed]

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

T. Writer, J. M. Sabatier, M. A. Miller, and K. D. Sherbondy, “Mine detection with a forward-moving portable laser Doppler vibrometer,” Proc. SPIE 4742, 649–653 (2002).
[CrossRef]

J. M. Sabatier and N. Xiang, “An investigation of acoustic-to-seismic coupling to detect buried antitank landmines,” IEEE Trans. Geosci. Remote Sens. 39, 1146–1154 (2001).
[CrossRef]

J. M. Sabatier and N. Xiang, “Laser-Doppler-based acoustic-to-seismic detection of buried mines,” Proc. SPIE 3710, 215–222 (1999).
[CrossRef]

J. M. Sabatier, “Increased ground vibration measurement speed for landmine detection,” Tech. Rep. ADA514444(University of Mississippi, 2009).

Schultz, K. I.

A. L. Kachelmyer and K. I. Schultz, “Laser vibration sensing,” Linc. Lab. J. 8, 3–28 (1995).

Shapiro, J. H.

Shen, C. N.

C. N. Shen, B. Waeber, L. Girata, and A. R. Lovett, “Project Radiant Outlaw,” Proc. SPIE 2272, 63–74 (1994).
[CrossRef]

Sherbondy, K. D.

T. Writer, J. M. Sabatier, M. A. Miller, and K. D. Sherbondy, “Mine detection with a forward-moving portable laser Doppler vibrometer,” Proc. SPIE 4742, 649–653 (2002).
[CrossRef]

Steinvall, O.

Thomson, J. A. L.

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[CrossRef]

Totems, J.

Vai, M.

H. Nguyen and M. Vai, “Rapid prototyping technology,” Linc. Lab. J. 18, 17–27 (2010).

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

Waeber, B.

C. N. Shen, B. Waeber, L. Girata, and A. R. Lovett, “Project Radiant Outlaw,” Proc. SPIE 2272, 63–74 (1994).
[CrossRef]

Writer, T.

T. Writer, J. M. Sabatier, M. A. Miller, and K. D. Sherbondy, “Mine detection with a forward-moving portable laser Doppler vibrometer,” Proc. SPIE 4742, 649–653 (2002).
[CrossRef]

Xiang, N.

N. Xiang and J. M. Sabatier, “An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling,” J. Acoust. Soc. Am. 113, 1333–1341 (2003).
[CrossRef] [PubMed]

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

J. M. Sabatier and N. Xiang, “An investigation of acoustic-to-seismic coupling to detect buried antitank landmines,” IEEE Trans. Geosci. Remote Sens. 39, 1146–1154 (2001).
[CrossRef]

J. M. Sabatier and N. Xiang, “Laser-Doppler-based acoustic-to-seismic detection of buried mines,” Proc. SPIE 3710, 215–222 (1999).
[CrossRef]

Appl. Opt. (5)

IEEE Trans. Geosci. Remote Sens. (1)

J. M. Sabatier and N. Xiang, “An investigation of acoustic-to-seismic coupling to detect buried antitank landmines,” IEEE Trans. Geosci. Remote Sens. 39, 1146–1154 (2001).
[CrossRef]

J. Acoust. Soc. Am. (1)

N. Xiang and J. M. Sabatier, “An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling,” J. Acoust. Soc. Am. 113, 1333–1341 (2003).
[CrossRef] [PubMed]

J. Sound Vib. (1)

J. R. Bell and S. J. Rothberg, “Rotational vibration measurements using laser Doppler vibrometry: comprehensive theory and practical application,” J. Sound Vib. 238, 673–690(2000).
[CrossRef]

Linc. Lab. J. (3)

A. L. Kachelmyer and K. I. Schultz, “Laser vibration sensing,” Linc. Lab. J. 8, 3–28 (1995).

R. Haupt and K. D. Rolt, “Stand-off acoustic-laser technique to locate buried landmines,” Linc. Lab. J. 15, 3–22 (2005).

H. Nguyen and M. Vai, “Rapid prototyping technology,” Linc. Lab. J. 18, 17–27 (2010).

NDT&E Int. (1)

H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT&E Int. 38, 213–218(2005).
[CrossRef]

Opt. Eng. (2)

H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003).
[CrossRef]

V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
[CrossRef]

Proc. SPIE (7)

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[CrossRef]

C. N. Shen, B. Waeber, L. Girata, and A. R. Lovett, “Project Radiant Outlaw,” Proc. SPIE 2272, 63–74 (1994).
[CrossRef]

A. Dräbenstedt, “Quantification of displacement and velocity noise in vibrometer measurements on transversely moving or rotating surfaces,” Proc. SPIE 6616, 661632 (2007).
[CrossRef]

J. M. Sabatier and N. Xiang, “Laser-Doppler-based acoustic-to-seismic detection of buried mines,” Proc. SPIE 3710, 215–222 (1999).
[CrossRef]

B. Libbey, D. Fenneman, and B. Burns, “Mobile platform for acoustic mine detection applications,” Proc. SPIE 5794, 683–693 (2005).
[CrossRef]

T. Writer, J. M. Sabatier, M. A. Miller, and K. D. Sherbondy, “Mine detection with a forward-moving portable laser Doppler vibrometer,” Proc. SPIE 4742, 649–653 (2002).
[CrossRef]

R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
[CrossRef]

Signal Process. (1)

K. D. Ridley and E. Jakeman, “Signal-to-noise analysis of FM demodulation in the presence of multiplicative and additive noise,” Signal Process. 80, 1895–1907 (2000).
[CrossRef]

Other (12)

J. W. Goodman, Statistical Optics (Wiley, 1985).

H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.

F. M. Gardner, Phaselock Techniques (Wiley, 1979).

D. N. Barr, C. S. Fox, and J. E. Nettleton, “Stabilized reference surface for laser vibration sensors,” U.S. patent 4,777,825(18 October 1988).

J. M. Sabatier, “Increased ground vibration measurement speed for landmine detection,” Tech. Rep. ADA514444(University of Mississippi, 2009).

Polytec Laser Vibrometers, 25 South Street, Suite A, Hopkinton, Massachusetts 01748, USA.

MetroLaser, 8 Chrysler, Irvine, California 92618, USA.

J. Sabatier and G. Matalkah, “A study on the passive detection of clandestine tunnels,” in 2008 IEEE Conference on Technologies for Homeland Security, (IEEE, 2008), pp. 353–358.
[CrossRef]

OYO Geospace Corporation, 7007 Pinemont Drive, Houston, Texas 77040, USA.

PCB Piezotronics, Inc., 3425 Walden Avenue, Depew, New York 14043-2495, USA.

Applied Technology Associates, 1300 Britt Street SE, Albuquerque, NM 87123, USA.

R. Haupt and K. Rolt, “Acoustic detection of hidden objects and material discontinuities,” U.S. patent 7,694,567 (13 April 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Five laser beams incident on a dirt road, located 10 m in front of the vehicle. Image was captured with a SWIR camera.

Fig. 2
Fig. 2

Multibeam laser vibrometer transmitter. The laser is a Redfern Integrated Optics Orion. The acousto-optic frequency shifter is a Brimrose AMF-60-60 1550-2FP+. The EDFA is a Keyopsys KPS-CUS-OEM-05-28-FA-FA. The collimator mount is a Newport U100-A3K. The collimator is a Thorlabs F810APC-1550.

Fig. 3
Fig. 3

One of five receiver channels. The balanced detector is a Thorlabs PDB120C-AC. The RF amplifier is a Mini-Circuits ZKL-1R5. The bandpass filter is a K&R Microwave 2435-55-SMA. The ADC is a Linear Technology LTC2209. The FPGA is half of a Xilinx Virtex-5 95SXT. The gray lines show the components that make up the FPGA and data acquisition computer. Gig-E, gigabit Ethernet.

Fig. 4
Fig. 4

Phasor diagram for carrier and noise. The carrier, c, is given by Eq. (3). The noise, n, is two-dimensional Gaussian distributed with probability density function exp [ ( r 2 + i 2 ) / ( 2 n r m s 2 ) ] / ( 2 π n r m s 2 ) . The dashed circle with radius n r m s denotes the standard deviation of the two-dimensional Gaussian distribution. The magnitude of the noise, | n | , is Rayleigh distributed. The estimate of the carrier’s phase, θ ^ , is one-dimensional Gaussian distributed for | c | | n | . “ FT [ i ( t ) ] ” denotes the Fourier transform of the detected current given by Eq. (1).

Fig. 5
Fig. 5

Measurements from a parked vehicle. (a) Plot of the surface velocity amplitude spectrum, A v , s h ( f ) . (b) Plot of the surface displacement amplitude spectrum, A x , s h ( f ) . (c) Histogram of the displacement amplitude spectrum from 10 to 46.875 kHz .

Fig. 6
Fig. 6

Shot and speckle noise spectra. The shot noise [ A v , s h ( f ) ], speckle noise [ A v , s p ( f ) ], and total noise [ A v ( f ) ] are given by Eqs. (10, 12, 13), respectively. The parameters used to generate these curves were CNR = 30 dB , d = 7 mm , and v t = 200 cm / s .

Fig. 7
Fig. 7

Plot of vehicle speed versus time while the operator tries to maintain a constant speed.

Fig. 8
Fig. 8

Amplitude spectrum of the surface velocity as measured with a contact accelerometer. Solid smooth curves are theoretically expected noise floors due to shot and speckle noise [Eq. (13)].

Fig. 9
Fig. 9

Amplitude spectrum of the surface velocity as measured with the laser vibrometer, uncompensated with accelerometer data or optical reference channel. Solid smooth curves are theoretically expected noise floors due to shot and speckle noise [Eq. (13))].

Fig. 10
Fig. 10

Amplitude spectrum of the surface velocity as measured with the laser vibrometer, corrected with accelerometer data. Solid smooth curves are theoretically expected noise floors due to shot and speckle noise [Eq. (13)].

Fig. 11
Fig. 11

Amplitude spectrum of the surface velocity as measured with the laser vibrometer, corrected with accelerometer data and optical reference channel. Solid smooth curves are theoretically expected noise floors due to shot and speckle noise [Eq. (13)].

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = i LO + i S ( t ) + 2 η h i LO i S ( t ) cos ( ω IF t + θ ( t ) ) ,
θ ( t ) = 2 k x ( t ) + θ S ( t ) = 4 π x ( t ) λ + θ S ( t ) ,
c | c | exp ( j θ ) = η h i LO i S exp ( j θ )
CNR carrier power noise power = E [ | c | 2 ] n r m s 2 = η h i S 2 q B a a = ϕ p e 2 B a a ,
θ ^ r m s n r m s E [ | c | ] = 1 CNR ,
( θ ^ r m s ) 2 = B a a + B a a S θ ( f ) d f .
S θ ( f ) = ( θ ^ r m s ) 2 2 B a a = 1 2 B a a CNR = 1 ϕ p e
S x ( f ) = ( λ 4 π ) 2 S θ ( f ) [ m 2 per Hertz ] .
S v ( f ) = ( 2 π f ) 2 S x ( f ) = ( λ 4 π ) 2 ( 2 π f ) 2 S θ ( f ) [ ( m / s ) 2 per Hertz ] .
A v , s h ( f ) = 2 rms to peak × 2 double to single sided × S v ( f ) = 2 ( λ 4 π ) ( 2 π f ) S θ ( f ) = f λ ϕ p e .
A x , s h ( f ) = λ 2 π ϕ p e ,
A v , s p ( f ) = λ π f exc 2 12 2 α α 2 + ( 2 π f ) 2 ,
A v ( f ) = [ A v , s h ( f ) ] 2 + [ A v , s p ( f ) ] 2 ,

Metrics