Abstract

Light transport in a graded photonic crystal is studied using the finite-difference time-domain technique. The photonic crystal consists of a square lattice of elliptical dielectric rods. Within a frequency window, light can propagate inside the photonic crystal with the beam width nearly unchanged. The propagation direction can be easily manipulated by the structure gradient, which is achieved by gradually varying the orientation of the elliptical rods. The degree of control over the flow of light can be modulated by changing the ellipticity. This provides a promising approach to design of optical devices for spatial-beam routing.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tokushima, H. Kosaka, K. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
    [CrossRef]
  2. S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
    [CrossRef]
  3. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
    [CrossRef]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [CrossRef]
  5. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
    [CrossRef]
  6. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004).
    [CrossRef] [PubMed]
  7. N. Malkova, D. A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals,” Phys. Rev. B 72, 045144(2005).
    [CrossRef]
  8. E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett. 30, 2278–2280 (2005).
    [CrossRef] [PubMed]
  9. H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15, 1240–1253 (2007).
    [CrossRef] [PubMed]
  10. Y. Li, M. Li, P. Gu, Z. Zheng, and X. Liu, “Graded wavelike two-dimensional photonic crystal made of thin films,” Appl. Opt. 47, C70–C74 (2008).
    [CrossRef] [PubMed]
  11. F. S. Roux and I. De Leon, “Planar photonic crystal gradient index lens, simulated with a finite difference time domain method,” Phys. Rev. B 74, 113103 (2006).
    [CrossRef]
  12. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
    [CrossRef]
  13. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [CrossRef] [PubMed]
  14. Z. Y. Li, J. Wang, and B. Y. Gu, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. B 58, 3721–3729(1998).
    [CrossRef]
  15. D. N. Chigrin, S. Enoch, C. M. S. Torres, and G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11, 1203–1211 (2003).
    [CrossRef] [PubMed]
  16. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
    [CrossRef]
  17. A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House, 1995).
  18. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
    [CrossRef]
  19. E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008).
    [CrossRef]
  20. A. Chutinan, M. o. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
    [CrossRef]

2008 (3)

Y. Li, M. Li, P. Gu, Z. Zheng, and X. Liu, “Graded wavelike two-dimensional photonic crystal made of thin films,” Appl. Opt. 47, C70–C74 (2008).
[CrossRef] [PubMed]

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[CrossRef]

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008).
[CrossRef]

2007 (1)

2006 (1)

F. S. Roux and I. De Leon, “Planar photonic crystal gradient index lens, simulated with a finite difference time domain method,” Phys. Rev. B 74, 113103 (2006).
[CrossRef]

2005 (3)

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

N. Malkova, D. A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals,” Phys. Rev. B 72, 045144(2005).
[CrossRef]

E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett. 30, 2278–2280 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (3)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

A. Chutinan, M. o. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

2001 (1)

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

2000 (1)

M. Tokushima, H. Kosaka, K. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

1998 (1)

Z. Y. Li, J. Wang, and B. Y. Gu, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. B 58, 3721–3729(1998).
[CrossRef]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Akmansoy, E.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008).
[CrossRef]

Benisty, H.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

Caglayan, H.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[CrossRef]

Cakmak, O.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[CrossRef]

Cao, J. R.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Cassagne, D.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008).
[CrossRef]

E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett. 30, 2278–2280 (2005).
[CrossRef] [PubMed]

Centeno, E.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008).
[CrossRef]

E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett. 30, 2278–2280 (2005).
[CrossRef] [PubMed]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Chen, C.

Chigrin, D. N.

Choi, S.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Chutinan, A.

A. Chutinan, M. o. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Citrin, D. S.

Colak, E.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[CrossRef]

Dapkus, P. D.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

De Leon, I.

F. S. Roux and I. De Leon, “Planar photonic crystal gradient index lens, simulated with a finite difference time domain method,” Phys. Rev. B 74, 113103 (2006).
[CrossRef]

Enoch, S.

Gopalan, V.

N. Malkova, D. A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals,” Phys. Rev. B 72, 045144(2005).
[CrossRef]

Gu, B. Y.

Z. Y. Li, J. Wang, and B. Y. Gu, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. B 58, 3721–3729(1998).
[CrossRef]

Gu, P.

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Houdré, R.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Karlsson, A.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kim, W. J.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Kosaka, H.

M. Tokushima, H. Kosaka, K. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kuang, W.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Kurt, H.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[CrossRef]

H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15, 1240–1253 (2007).
[CrossRef] [PubMed]

Li, M.

Li, Y.

Li, Z. Y.

Z. Y. Li, J. Wang, and B. Y. Gu, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. B 58, 3721–3729(1998).
[CrossRef]

Liu, X.

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Lourtioz, M.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008).
[CrossRef]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Malkova, N.

N. Malkova, D. A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals,” Phys. Rev. B 72, 045144(2005).
[CrossRef]

Murakowski, J.

Noda, S.

A. Chutinan, M. o. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

O’Brien, J. D.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Oesterle, U.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Okano, M. o.

A. Chutinan, M. o. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Oliver, S.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Ozbay, E.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[CrossRef]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Prather, D. W.

Pustai, D. M.

Qiu, M.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Rattier, M.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Roux, F. S.

F. S. Roux and I. De Leon, “Planar photonic crystal gradient index lens, simulated with a finite difference time domain method,” Phys. Rev. B 74, 113103 (2006).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Scherer, A.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Schneider, G.

Scrymgeour, D. A.

N. Malkova, D. A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals,” Phys. Rev. B 72, 045144(2005).
[CrossRef]

Sharkawy, A.

Shi, S.

Shih, M. H.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Smith, C. J. M.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House, 1995).

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Tayeb, G.

Tokushima, M.

M. Tokushima, H. Kosaka, K. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Tomita, K.

M. Tokushima, H. Kosaka, K. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Torres, C. M. S.

Venkataraman, S.

Vynck, K.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008).
[CrossRef]

Wang, J.

Z. Y. Li, J. Wang, and B. Y. Gu, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. B 58, 3721–3729(1998).
[CrossRef]

Weisbuch, C.

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Witzens, J.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Yamada, H.

M. Tokushima, H. Kosaka, K. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Zheng, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (7)

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[CrossRef]

M. Tokushima, H. Kosaka, K. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008).
[CrossRef]

A. Chutinan, M. o. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (4)

N. Malkova, D. A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals,” Phys. Rev. B 72, 045144(2005).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Z. Y. Li, J. Wang, and B. Y. Gu, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. B 58, 3721–3729(1998).
[CrossRef]

F. S. Roux and I. De Leon, “Planar photonic crystal gradient index lens, simulated with a finite difference time domain method,” Phys. Rev. B 74, 113103 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Other (1)

A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic PhC structure consisting of square lattice of elliptical dielectric rods. (left) The first Brillouin zone. The surface normal of the PhC slab is along the Γ - M direction. The major axis of the ellipse is oriented by an angle θ to the Γ - M direction.

Fig. 2
Fig. 2

(a) Several equifrequency contours of a PhC with θ = 0 ° . The PhC structure is schematically shown in the inset. (b) The electric-field pattern in such a PhC. The major axis of the elliptical rod is parallel to the surface normal of the PhC slab. The frequency of the incident beam is 0.212 ( c / a ) .

Fig. 3
Fig. 3

Same as Fig. 2b except that different ellipse orientations are considered. The insets show the schematic PhC structures. (a) θ = 30 ° , (b)  θ = 45 ° , (c)  θ = 90 ° , (d)  θ = 135 ° .

Fig. 4
Fig. 4

Equifrequency contours of PhC structures at different orientation angles. The insets show schematic diagrams of the PhCs. (a)  θ = 30 ° , (b)  θ = 45 ° , (c)  θ = 90 ° , (d)  θ = 135 ° .

Fig. 5
Fig. 5

Electric-field pattern inside a graded PhC. θ varies linearly from 0 ° to 180 ° .

Fig. 6
Fig. 6

Electric-field pattern inside PhCs with θ = 45 ° . The ellipticity of the dielectric rod is (a)  e = 1.5 , (b)  e = 2.5 .

Metrics