Abstract

This research proposes an issue that has previously been omitted in flow field temperature reconstruction by optical computerized tomography (OCT). To prove that it is not reasonable to always assume an isobaric process occurs when OCT is adopted to obtain the temperature distributions of flow fields, a propane–air flame and an argon arc plasma are chosen as two practical examples for experiment. In addition, the measurement of the refractive index is achieved by moiré deflection tomography. The results indicate that the influence of pressure distribution on temperature reconstruction is a universal phenomenon for various flow fields. Hence, the condition that can be introduced to estimate when an isobaric process can no longer be assumed is presented. In addition, an equation is offered to describe the temperature reconstruction imprecision that is caused by using the supposed pressure instead of the practical pressure.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823(1982).
    [CrossRef]
  2. R. Snyder and L. Hesselink, “Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade,” Appl. Opt. 23, 3650–3656 (1984).
    [CrossRef] [PubMed]
  3. D.-P. Yan, A.-Z. He, and X.-W. Ni, “New method of asymmetric flow field measurement in hypersonic shock tunnel,” Appl. Opt. 30, 770–774 (1991).
    [CrossRef] [PubMed]
  4. C. Soller, R. Wenskus, P. Middendorf, G. Meier, and F. Obermeier, “Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow,” Appl. Opt. 33, 2921–2932 (1994).
    [CrossRef] [PubMed]
  5. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flame by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
    [CrossRef] [PubMed]
  6. A. F. Ibarreta and C.-J. Sung, “Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry,” Appl. Opt. 44, 3565–3575(2005).
    [CrossRef] [PubMed]
  7. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), p. 92.
  8. E. Bar-Ziv, S. Sgulim, O. Kafri, and E. Keren, “Temperature mapping in flames by moiré deflectometry,” Appl. Opt. 22, 698–705 (1983).
    [CrossRef] [PubMed]
  9. H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131–136 (1985).
    [CrossRef]
  10. S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
    [CrossRef]
  11. M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
    [CrossRef]
  12. P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
    [CrossRef]
  13. D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
    [CrossRef]
  14. K. Yamamoto, “Pressure change and transport process on flames formed in a stretched, rotating flow,” Combust. Flame 118, 431–444 (1999).
    [CrossRef]
  15. P. Weigand, W. Meier, X. R. Duan1, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224(2006).
    [CrossRef]
  16. U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
    [CrossRef]
  17. F. J. Weinberg, Optics of Flames, (Butterworths, 1963), p. 23.
  18. H. T. Xue, H. Li, and J. Y. Li, “Theoretic calculation of arc plasma refractive index,” Chin. J. Mech. Eng. 40, 49–53, 58 (2004) (in Chinese).
    [CrossRef]
  19. C. W. Allen, Astrophysical Quantities (Athlone, 1963).
  20. Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Dependence of arc plasma dispersion capability on its temperature,” Chin. Phys. Lett. 25, 4258–4261 (2008).
    [CrossRef]
  21. Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A model for arc plasma’s temperature reconstruction by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
    [CrossRef]
  22. Y. Song, Y.-Y. Chen, A.-Z. He, and Z.-M. Zhao, “Moiré tomography based on phase reconstruction,” Acta Opt. Sin. 29, 1232–1239 (2009) (in Chinese).
    [CrossRef]
  23. O. Kafri and I. Glatt, “Moire deflectometry: a ray deflection approach to optical testing,” Opt. Eng. 24, 944–960 (1985).
  24. R. L. Farrow, P. L. Mattern, and L. A. Rahn, “Comparison between CARS and corrected thermocouple temperature measurements in a diffusion flame,” Appl. Opt. 21, 3119–3125 (1982).
    [CrossRef] [PubMed]
  25. S. W. Kizirnis, R. J. Brecha, B. N. Ganguly, L. P. Goss, and R. Gupta, “Hydroxyl (OH) distributions and temperature profiles in a premixed propane flame obtained by laser deflection techniques,” Appl. Opt. 23, 3873–3881 (1984).
    [CrossRef] [PubMed]
  26. H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by IR emission computed tomography,” Appl. Opt. 24, 4111–4116 (1985).
    [CrossRef] [PubMed]
  27. Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A uniform description for the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
    [CrossRef]

2011 (1)

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A model for arc plasma’s temperature reconstruction by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

2010 (1)

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A uniform description for the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

2009 (2)

Y. Song, Y.-Y. Chen, A.-Z. He, and Z.-M. Zhao, “Moiré tomography based on phase reconstruction,” Acta Opt. Sin. 29, 1232–1239 (2009) (in Chinese).
[CrossRef]

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
[CrossRef]

2008 (1)

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Dependence of arc plasma dispersion capability on its temperature,” Chin. Phys. Lett. 25, 4258–4261 (2008).
[CrossRef]

2007 (1)

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
[CrossRef]

2006 (1)

P. Weigand, W. Meier, X. R. Duan1, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224(2006).
[CrossRef]

2005 (1)

2004 (1)

H. T. Xue, H. Li, and J. Y. Li, “Theoretic calculation of arc plasma refractive index,” Chin. J. Mech. Eng. 40, 49–53, 58 (2004) (in Chinese).
[CrossRef]

2003 (1)

P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
[CrossRef]

2001 (1)

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

1999 (1)

K. Yamamoto, “Pressure change and transport process on flames formed in a stretched, rotating flow,” Combust. Flame 118, 431–444 (1999).
[CrossRef]

1994 (1)

1992 (1)

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

1991 (1)

1985 (3)

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131–136 (1985).
[CrossRef]

H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by IR emission computed tomography,” Appl. Opt. 24, 4111–4116 (1985).
[CrossRef] [PubMed]

O. Kafri and I. Glatt, “Moire deflectometry: a ray deflection approach to optical testing,” Opt. Eng. 24, 944–960 (1985).

1984 (2)

1983 (1)

1982 (2)

1981 (1)

Aigner, M.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
[CrossRef]

P. Weigand, W. Meier, X. R. Duan1, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224(2006).
[CrossRef]

Allen, C. W.

C. W. Allen, Astrophysical Quantities (Athlone, 1963).

Bar-Ziv, E.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), p. 92.

Brecha, R. J.

Chen, Y.-Y.

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A model for arc plasma’s temperature reconstruction by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A uniform description for the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Y. Song, Y.-Y. Chen, A.-Z. He, and Z.-M. Zhao, “Moiré tomography based on phase reconstruction,” Acta Opt. Sin. 29, 1232–1239 (2009) (in Chinese).
[CrossRef]

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Dependence of arc plasma dispersion capability on its temperature,” Chin. Phys. Lett. 25, 4258–4261 (2008).
[CrossRef]

Duan1, X. R.

P. Weigand, W. Meier, X. R. Duan1, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224(2006).
[CrossRef]

Farrow, R. L.

Fujiwara, T.

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

Ganguly, B. N.

Glatt, I.

O. Kafri and I. Glatt, “Moire deflectometry: a ray deflection approach to optical testing,” Opt. Eng. 24, 944–960 (1985).

E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flame by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
[CrossRef] [PubMed]

Goss, L. P.

Gupta, R.

He, A.-Z.

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A model for arc plasma’s temperature reconstruction by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A uniform description for the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Y. Song, Y.-Y. Chen, A.-Z. He, and Z.-M. Zhao, “Moiré tomography based on phase reconstruction,” Acta Opt. Sin. 29, 1232–1239 (2009) (in Chinese).
[CrossRef]

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Dependence of arc plasma dispersion capability on its temperature,” Chin. Phys. Lett. 25, 4258–4261 (2008).
[CrossRef]

D.-P. Yan, A.-Z. He, and X.-W. Ni, “New method of asymmetric flow field measurement in hypersonic shock tunnel,” Appl. Opt. 30, 770–774 (1991).
[CrossRef] [PubMed]

Hertz, H. M.

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131–136 (1985).
[CrossRef]

Hesselink, L.

Ibarreta, A. F.

Ik, S. K.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
[CrossRef]

Kafri, O.

O. Kafri and I. Glatt, “Moire deflectometry: a ray deflection approach to optical testing,” Opt. Eng. 24, 944–960 (1985).

E. Bar-Ziv, S. Sgulim, O. Kafri, and E. Keren, “Temperature mapping in flames by moiré deflectometry,” Appl. Opt. 22, 698–705 (1983).
[CrossRef] [PubMed]

J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823(1982).
[CrossRef]

E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flame by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
[CrossRef] [PubMed]

Keren, E.

Kizirnis, S. W.

Lai, W. Z.

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

Li, H.

H. T. Xue, H. Li, and J. Y. Li, “Theoretic calculation of arc plasma refractive index,” Chin. J. Mech. Eng. 40, 49–53, 58 (2004) (in Chinese).
[CrossRef]

Li, J. Y.

H. T. Xue, H. Li, and J. Y. Li, “Theoretic calculation of arc plasma refractive index,” Chin. J. Mech. Eng. 40, 49–53, 58 (2004) (in Chinese).
[CrossRef]

Li, Z.-H.

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A model for arc plasma’s temperature reconstruction by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A uniform description for the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Dependence of arc plasma dispersion capability on its temperature,” Chin. Phys. Lett. 25, 4258–4261 (2008).
[CrossRef]

Mattern, P. L.

Meier, G.

Meier, W.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
[CrossRef]

P. Weigand, W. Meier, X. R. Duan1, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224(2006).
[CrossRef]

Middendorf, P.

Nakajima, M.

Ni, X.-W.

Obermeier, F.

Rahn, L. A.

Sadanandan, R.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
[CrossRef]

Sgulim, S.

Shakher, C.

P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

Singh, P.

P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
[CrossRef]

Snyder, R.

Soller, C.

Song, Y.

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A model for arc plasma’s temperature reconstruction by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A uniform description for the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Y. Song, Y.-Y. Chen, A.-Z. He, and Z.-M. Zhao, “Moiré tomography based on phase reconstruction,” Acta Opt. Sin. 29, 1232–1239 (2009) (in Chinese).
[CrossRef]

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Dependence of arc plasma dispersion capability on its temperature,” Chin. Phys. Lett. 25, 4258–4261 (2008).
[CrossRef]

Stöhr, M.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
[CrossRef]

Stopper, U.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
[CrossRef]

Stricker, J.

J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823(1982).
[CrossRef]

Stricker, W.

P. Weigand, W. Meier, X. R. Duan1, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224(2006).
[CrossRef]

Sung, C.-J.

Thakur, M.

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

Tieng, S. M.

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

Uchiyama, H.

Vyas, A. L.

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

Weigand, P.

P. Weigand, W. Meier, X. R. Duan1, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224(2006).
[CrossRef]

Weinberg, F. J.

F. J. Weinberg, Optics of Flames, (Butterworths, 1963), p. 23.

Wenskus, R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), p. 92.

Xue, H. T.

H. T. Xue, H. Li, and J. Y. Li, “Theoretic calculation of arc plasma refractive index,” Chin. J. Mech. Eng. 40, 49–53, 58 (2004) (in Chinese).
[CrossRef]

Yamamoto, K.

K. Yamamoto, “Pressure change and transport process on flames formed in a stretched, rotating flow,” Combust. Flame 118, 431–444 (1999).
[CrossRef]

Yan, D.-P.

Yuta, S.

Zhang, D. Y.

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
[CrossRef]

Zhao, Z.-M.

Y. Song, Y.-Y. Chen, A.-Z. He, and Z.-M. Zhao, “Moiré tomography based on phase reconstruction,” Acta Opt. Sin. 29, 1232–1239 (2009) (in Chinese).
[CrossRef]

Zhou, H. C.

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
[CrossRef]

Acta Opt. Sin. (1)

Y. Song, Y.-Y. Chen, A.-Z. He, and Z.-M. Zhao, “Moiré tomography based on phase reconstruction,” Acta Opt. Sin. 29, 1232–1239 (2009) (in Chinese).
[CrossRef]

AIAA J. (1)

J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823(1982).
[CrossRef]

Appl. Opt. (9)

R. Snyder and L. Hesselink, “Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade,” Appl. Opt. 23, 3650–3656 (1984).
[CrossRef] [PubMed]

D.-P. Yan, A.-Z. He, and X.-W. Ni, “New method of asymmetric flow field measurement in hypersonic shock tunnel,” Appl. Opt. 30, 770–774 (1991).
[CrossRef] [PubMed]

C. Soller, R. Wenskus, P. Middendorf, G. Meier, and F. Obermeier, “Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow,” Appl. Opt. 33, 2921–2932 (1994).
[CrossRef] [PubMed]

E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flame by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
[CrossRef] [PubMed]

A. F. Ibarreta and C.-J. Sung, “Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry,” Appl. Opt. 44, 3565–3575(2005).
[CrossRef] [PubMed]

E. Bar-Ziv, S. Sgulim, O. Kafri, and E. Keren, “Temperature mapping in flames by moiré deflectometry,” Appl. Opt. 22, 698–705 (1983).
[CrossRef] [PubMed]

R. L. Farrow, P. L. Mattern, and L. A. Rahn, “Comparison between CARS and corrected thermocouple temperature measurements in a diffusion flame,” Appl. Opt. 21, 3119–3125 (1982).
[CrossRef] [PubMed]

S. W. Kizirnis, R. J. Brecha, B. N. Ganguly, L. P. Goss, and R. Gupta, “Hydroxyl (OH) distributions and temperature profiles in a premixed propane flame obtained by laser deflection techniques,” Appl. Opt. 23, 3873–3881 (1984).
[CrossRef] [PubMed]

H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by IR emission computed tomography,” Appl. Opt. 24, 4111–4116 (1985).
[CrossRef] [PubMed]

Chin. J. Mech. Eng. (1)

H. T. Xue, H. Li, and J. Y. Li, “Theoretic calculation of arc plasma refractive index,” Chin. J. Mech. Eng. 40, 49–53, 58 (2004) (in Chinese).
[CrossRef]

Chin. Phys. Lett. (1)

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Dependence of arc plasma dispersion capability on its temperature,” Chin. Phys. Lett. 25, 4258–4261 (2008).
[CrossRef]

Combust. Flame (2)

K. Yamamoto, “Pressure change and transport process on flames formed in a stretched, rotating flow,” Combust. Flame 118, 431–444 (1999).
[CrossRef]

P. Weigand, W. Meier, X. R. Duan1, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224(2006).
[CrossRef]

Fuel (1)

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
[CrossRef]

J. Eng. Gas Turbines Power (1)

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and S. K. Ik, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turbines Power 131, 021504 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

Opt. Commun. (3)

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131–136 (1985).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A model for arc plasma’s temperature reconstruction by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A.-Z. He, “A uniform description for the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Opt. Eng. (2)

O. Kafri and I. Glatt, “Moire deflectometry: a ray deflection approach to optical testing,” Opt. Eng. 24, 944–960 (1985).

P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
[CrossRef]

Opt. Lasers Eng. (1)

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), p. 92.

C. W. Allen, Astrophysical Quantities (Athlone, 1963).

F. J. Weinberg, Optics of Flames, (Butterworths, 1963), p. 23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of moiré deflectometry. 1, laser; 2, extender lens; 3, collimating lens; 4, measured object; 5 and 6, Ronchi gratings; 7 and 9, imaging lenses; 8, pinhole filter; 10, screen.

Fig. 2
Fig. 2

Moiré fringes of the propane–air flame.

Fig. 3
Fig. 3

Radial distribution of the refractive index.

Fig. 4
Fig. 4

Moiré fringes of the argon arc plasma.

Fig. 5
Fig. 5

Radial distribution of the refractive index.

Fig. 6
Fig. 6

Radial distribution of the temperature.

Fig. 7
Fig. 7

Radial distribution of the temperature.

Fig. 8
Fig. 8

Radial distribution of the pressure.

Fig. 9
Fig. 9

Radial distribution of the temperature with the practical pressure distribution.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n 1 = 1 L ( A + B λ 2 ) N n ,
n 1 = 1 L i ( A i + B i λ 2 ) N n i = 1 L i ( A i + B i λ 2 ) γ i N t = 1 L ( i A i γ i + i B i γ i λ 2 ) N t = 1 L ( A + B λ 2 ) N t ,
N t = P κ T ,
n f 1 = 1 L ( A + B λ 2 ) P κ T .
C 3 H 8 + 5 [ O 2 + 3.76 N 2 ] = 3 CO 2 + 4 H 2 O + 3.76 × 5 N 2 = 3 CO 2 + 4 H 2 O + 18.8 N 2 .
A = γ H 2 O A H 2 O + γ CO 2 A CO 2 + γ N 2 A N 2 ,
B = γ H 2 O B H 2 O + γ CO 2 B CO 2 + γ N 2 B N 2 ,
n p 1 = 1 L ( A + B λ 2 ) ( N a + 0.67 N i ) 4.46 × 10 14 λ 2 N e ,
n p 1 = [ 1 L ( A + B λ 2 ) ( 1 0.33 α 1 ) 4.46 × 10 14 λ 2 α 1 ] P ( 1 + α 1 ) κ T ,
Δ n | T 0 = | n T 0 ( P s ) n T 0 ( P P ) | ,
Δ n | T 0 Δ n 0 .
Δ T = Δ n | T 0 d n d T | T 0 ,
Δ T = | n T 0 ( P s ) n T 0 ( P P ) | d n d T | T 0 .
e T 0 = Δ T T 0 × 100 % = | n T 0 ( P s ) n T 0 ( P P ) | d n d T | T 0 · T 0 × 100 % .

Metrics