Abstract

The microphysical model Marine Aerosol Extinction Profiles (MaexPro) for surface layer marine and coastal atmospheric aerosols, which is based on long-term observations of size distributions for 0.01100μm particles, is presented. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above the sea level (H), fetch (X), wind speed (U), and relative humidity is investigated. The model is primarily to characterize aerosols for the near-surface layer (within 25m). The model is also applicable to higher altitudes within the atmospheric boundary layer, where the change in the vertical profile of aerosol is not very large. In this case, it is only valid for “clean” marine environments, in the absence of air pollution or any other major sources of continental aerosols, such desert dust or smoke from biomass burning. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro are in good agreement with observational data and the numerical results obtained by the well-known Navy Aerosol Model and Advanced Navy Aerosol Model codes. Moreover, MaexPro was found to be an accurate and reliable instrument for investigation of the optical properties of atmospheric aerosols.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Lewis and S. E. Schwartz, Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review, Geophysical Monograph Series (American Geophysical Union, 2004).
    [CrossRef]
  2. S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).
  3. S. G. Gathman and J. A. M. van Eijk, “Characterizing large aerosols at the lowest levels of marine atmosphere,” Proc. SPIE 3433, 41–52 (1998).
    [CrossRef]
  4. J. Piazzola, G. Kaloshin, G. de Leeuw, and J. A. M. van Eijk, “Aerosol extinction in coastal zone,” Proc. SPIE 5572, 94–100 (2004).
    [CrossRef]
  5. J. Piazzola and G. Kaloshin, “Influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” J. Aerosol Sci. 1, S535–S536 (2004).
  6. J. Piazzola and G. Kaloshin, “Performance evaluation of the coastal aerosol extinction code “MEDEX” with data from the Black Sea,” J. Aerosol Sci. 36, 341–359 (2005).
    [CrossRef]
  7. G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Contrib. Atmos. Phys. 44, 73–183 (1971).
  8. H. E. Gerber, “Relative humidity parameterization of the Navy Aerosol Model (NAM),” Naval Research Laboratory Report 8956 (1985).
  9. C. R. Zeisse, “NAM6: batch code for the Navy Aerosol Model,” Tech. Rep. 1804, Sparwar Systems Center (1999).
  10. G. Kaloshin, “Spectral transparency of the sea and coastal atmosphere surface layer,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 427–428.
  11. G. A. Kaloshin and G. G. Matvienko, “Aerosol model development for environmental monitoring in the coastal atmosphere surface layer,” Proc. SPIE 6733, 67330B (2007).
    [CrossRef]
  12. G. Kaloshin and J. Piazzola, “Influence of the large aerosol particles on the infrared propagation in coastal areas,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 429–432.
  13. G. Kaloshin and J. Piazzola, “The coastal aerosol microphysical model,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 423–426.
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  15. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Air Force Geophysics LaboratoryTR-79-0214, Environmental Research Papers No. 676, MA 01731 (1979).
  16. F. E. Volz, “Infrared refractive index of atmospheric aerosol substances,” Appl. Opt. 11, 755–759 (1972).
    [CrossRef] [PubMed]
  17. F. E. Volz, “Infrared optical-constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash,” Appl. Opt. 12, 564–568 (1973).
    [CrossRef] [PubMed]
  18. G. M. Hale and M. R. Query, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  19. G. A. Kaloshin, S. A. Shishkin, and S. A. Serov, “The program package MaexPro for calculation atmospheric aerosol extinction in the marine and coastal surface layer,” J. Opt. Technol. 74, 20–27 (2007).
  20. G. A. Kaloshin and S. A. Shishkin, “Calculation of the vision range for light signals from a navigation complex based on scanning electronically pumped semiconductor laser. Part II. Aerosol extinction and calculated results,” J. Atmos. Ocean. Opt. 20, 253–261 (2007).
  21. G. A. Kaloshin and S. A. Shishkin, “The MAEXPRO program at the analysis of sea and coastal aerosol properties,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 363–365.
  22. G. A. Kaloshin, “Aerosol extinction of optical radiation in coastal environment,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 195–198.
  23. G. A. Kaloshin, “Influence of the particles sizes spectrum of the sea salt aerosol at estimations of the signal power,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 365–367.
  24. A. D. Clarke and V. N. Kapustin, “The Shoreline Environment Aerosol Study (SEAS): a context for marine aerosol measurements influenced by a coastal environment and long-range transport,” J. Atmos. Ocean. Technol. 20, 1351–1361(2003).
    [CrossRef]
  25. G. A. Kaloshin, “Influence of wind conditions on aerosol extinction in the sea and coastal atmosphere surface layer,” J. Atmos. Ocean. Opt. 20, 571–576 (2007).
  26. M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, 1988).
  27. G. A. Kaloshin, J. Piazzola, and S. A. Shishkin, “Numerical modeling of influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” in Proceedings of 16th International Conference on Nucleation and Atmospheric Aerosols (2004), pp. 352–354.
  28. D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
    [CrossRef]
  29. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49, 5545–5560 (2010).
    [CrossRef] [PubMed]

2010 (1)

2007 (4)

G. A. Kaloshin, “Influence of wind conditions on aerosol extinction in the sea and coastal atmosphere surface layer,” J. Atmos. Ocean. Opt. 20, 571–576 (2007).

G. A. Kaloshin, S. A. Shishkin, and S. A. Serov, “The program package MaexPro for calculation atmospheric aerosol extinction in the marine and coastal surface layer,” J. Opt. Technol. 74, 20–27 (2007).

G. A. Kaloshin and S. A. Shishkin, “Calculation of the vision range for light signals from a navigation complex based on scanning electronically pumped semiconductor laser. Part II. Aerosol extinction and calculated results,” J. Atmos. Ocean. Opt. 20, 253–261 (2007).

G. A. Kaloshin and G. G. Matvienko, “Aerosol model development for environmental monitoring in the coastal atmosphere surface layer,” Proc. SPIE 6733, 67330B (2007).
[CrossRef]

2005 (1)

J. Piazzola and G. Kaloshin, “Performance evaluation of the coastal aerosol extinction code “MEDEX” with data from the Black Sea,” J. Aerosol Sci. 36, 341–359 (2005).
[CrossRef]

2004 (2)

J. Piazzola, G. Kaloshin, G. de Leeuw, and J. A. M. van Eijk, “Aerosol extinction in coastal zone,” Proc. SPIE 5572, 94–100 (2004).
[CrossRef]

J. Piazzola and G. Kaloshin, “Influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” J. Aerosol Sci. 1, S535–S536 (2004).

2003 (1)

A. D. Clarke and V. N. Kapustin, “The Shoreline Environment Aerosol Study (SEAS): a context for marine aerosol measurements influenced by a coastal environment and long-range transport,” J. Atmos. Ocean. Technol. 20, 1351–1361(2003).
[CrossRef]

2001 (1)

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

1998 (1)

S. G. Gathman and J. A. M. van Eijk, “Characterizing large aerosols at the lowest levels of marine atmosphere,” Proc. SPIE 3433, 41–52 (1998).
[CrossRef]

1983 (1)

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).

1973 (2)

1972 (1)

1971 (1)

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Contrib. Atmos. Phys. 44, 73–183 (1971).

Ahmad, Z.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Clarke, A. D.

A. D. Clarke and V. N. Kapustin, “The Shoreline Environment Aerosol Study (SEAS): a context for marine aerosol measurements influenced by a coastal environment and long-range transport,” J. Atmos. Ocean. Technol. 20, 1351–1361(2003).
[CrossRef]

Davidson, K. L.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

de Leeuw, G.

J. Piazzola, G. Kaloshin, G. de Leeuw, and J. A. M. van Eijk, “Aerosol extinction in coastal zone,” Proc. SPIE 5572, 94–100 (2004).
[CrossRef]

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Fadeev, V. Ya.

M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, 1988).

Fenn, R. W.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Air Force Geophysics LaboratoryTR-79-0214, Environmental Research Papers No. 676, MA 01731 (1979).

Franz, B. A.

Frederickson, P. A.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Gathman, S. G.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

S. G. Gathman and J. A. M. van Eijk, “Characterizing large aerosols at the lowest levels of marine atmosphere,” Proc. SPIE 3433, 41–52 (1998).
[CrossRef]

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).

Gerber, H. E.

H. E. Gerber, “Relative humidity parameterization of the Navy Aerosol Model (NAM),” Naval Research Laboratory Report 8956 (1985).

Hale, G. M.

Hänel, G.

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Contrib. Atmos. Phys. 44, 73–183 (1971).

Holben, B. N.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jensen, D. R.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Kabanov, M. V.

M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, 1988).

Kaloshin, G.

J. Piazzola and G. Kaloshin, “Performance evaluation of the coastal aerosol extinction code “MEDEX” with data from the Black Sea,” J. Aerosol Sci. 36, 341–359 (2005).
[CrossRef]

J. Piazzola, G. Kaloshin, G. de Leeuw, and J. A. M. van Eijk, “Aerosol extinction in coastal zone,” Proc. SPIE 5572, 94–100 (2004).
[CrossRef]

J. Piazzola and G. Kaloshin, “Influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” J. Aerosol Sci. 1, S535–S536 (2004).

G. Kaloshin and J. Piazzola, “The coastal aerosol microphysical model,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 423–426.

G. Kaloshin, “Spectral transparency of the sea and coastal atmosphere surface layer,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 427–428.

G. Kaloshin and J. Piazzola, “Influence of the large aerosol particles on the infrared propagation in coastal areas,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 429–432.

Kaloshin, G. A.

G. A. Kaloshin and G. G. Matvienko, “Aerosol model development for environmental monitoring in the coastal atmosphere surface layer,” Proc. SPIE 6733, 67330B (2007).
[CrossRef]

G. A. Kaloshin, S. A. Shishkin, and S. A. Serov, “The program package MaexPro for calculation atmospheric aerosol extinction in the marine and coastal surface layer,” J. Opt. Technol. 74, 20–27 (2007).

G. A. Kaloshin and S. A. Shishkin, “Calculation of the vision range for light signals from a navigation complex based on scanning electronically pumped semiconductor laser. Part II. Aerosol extinction and calculated results,” J. Atmos. Ocean. Opt. 20, 253–261 (2007).

G. A. Kaloshin, “Influence of wind conditions on aerosol extinction in the sea and coastal atmosphere surface layer,” J. Atmos. Ocean. Opt. 20, 571–576 (2007).

G. A. Kaloshin and S. A. Shishkin, “The MAEXPRO program at the analysis of sea and coastal aerosol properties,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 363–365.

G. A. Kaloshin, “Aerosol extinction of optical radiation in coastal environment,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 195–198.

G. A. Kaloshin, “Influence of the particles sizes spectrum of the sea salt aerosol at estimations of the signal power,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 365–367.

G. A. Kaloshin, J. Piazzola, and S. A. Shishkin, “Numerical modeling of influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” in Proceedings of 16th International Conference on Nucleation and Atmospheric Aerosols (2004), pp. 352–354.

Kapustin, V. N.

A. D. Clarke and V. N. Kapustin, “The Shoreline Environment Aerosol Study (SEAS): a context for marine aerosol measurements influenced by a coastal environment and long-range transport,” J. Atmos. Ocean. Technol. 20, 1351–1361(2003).
[CrossRef]

Kwiatkowska, E. J.

Lewis, E. R.

E. R. Lewis and S. E. Schwartz, Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review, Geophysical Monograph Series (American Geophysical Union, 2004).
[CrossRef]

Matvienko, G. G.

G. A. Kaloshin and G. G. Matvienko, “Aerosol model development for environmental monitoring in the coastal atmosphere surface layer,” Proc. SPIE 6733, 67330B (2007).
[CrossRef]

McClain, C. R.

McGrath, C. P.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Panchenko, M. V.

M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, 1988).

Piazzola, J.

J. Piazzola and G. Kaloshin, “Performance evaluation of the coastal aerosol extinction code “MEDEX” with data from the Black Sea,” J. Aerosol Sci. 36, 341–359 (2005).
[CrossRef]

J. Piazzola and G. Kaloshin, “Influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” J. Aerosol Sci. 1, S535–S536 (2004).

J. Piazzola, G. Kaloshin, G. de Leeuw, and J. A. M. van Eijk, “Aerosol extinction in coastal zone,” Proc. SPIE 5572, 94–100 (2004).
[CrossRef]

G. Kaloshin and J. Piazzola, “Influence of the large aerosol particles on the infrared propagation in coastal areas,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 429–432.

G. Kaloshin and J. Piazzola, “The coastal aerosol microphysical model,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 423–426.

G. A. Kaloshin, J. Piazzola, and S. A. Shishkin, “Numerical modeling of influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” in Proceedings of 16th International Conference on Nucleation and Atmospheric Aerosols (2004), pp. 352–354.

Pkhalagov, Yu. A.

M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, 1988).

Query, M. R.

Schwartz, S. E.

E. R. Lewis and S. E. Schwartz, Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review, Geophysical Monograph Series (American Geophysical Union, 2004).
[CrossRef]

Serov, S. A.

Shettle, E. P.

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49, 5545–5560 (2010).
[CrossRef] [PubMed]

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Air Force Geophysics LaboratoryTR-79-0214, Environmental Research Papers No. 676, MA 01731 (1979).

Shishkin, S. A.

G. A. Kaloshin, S. A. Shishkin, and S. A. Serov, “The program package MaexPro for calculation atmospheric aerosol extinction in the marine and coastal surface layer,” J. Opt. Technol. 74, 20–27 (2007).

G. A. Kaloshin and S. A. Shishkin, “Calculation of the vision range for light signals from a navigation complex based on scanning electronically pumped semiconductor laser. Part II. Aerosol extinction and calculated results,” J. Atmos. Ocean. Opt. 20, 253–261 (2007).

G. A. Kaloshin and S. A. Shishkin, “The MAEXPRO program at the analysis of sea and coastal aerosol properties,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 363–365.

G. A. Kaloshin, J. Piazzola, and S. A. Shishkin, “Numerical modeling of influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” in Proceedings of 16th International Conference on Nucleation and Atmospheric Aerosols (2004), pp. 352–354.

Smith, M. H.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Uzhegov, V. N.

M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, 1988).

van Eijk, J. A. M.

J. Piazzola, G. Kaloshin, G. de Leeuw, and J. A. M. van Eijk, “Aerosol extinction in coastal zone,” Proc. SPIE 5572, 94–100 (2004).
[CrossRef]

S. G. Gathman and J. A. M. van Eijk, “Characterizing large aerosols at the lowest levels of marine atmosphere,” Proc. SPIE 3433, 41–52 (1998).
[CrossRef]

Veretennikov, V. V.

M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, 1988).

Volz, F. E.

Werdell, J.

Zeisse, C. R.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

C. R. Zeisse, “NAM6: batch code for the Navy Aerosol Model,” Tech. Rep. 1804, Sparwar Systems Center (1999).

Appl. Opt. (4)

Contrib. Atmos. Phys. (1)

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Contrib. Atmos. Phys. 44, 73–183 (1971).

J. Aerosol Sci. (2)

J. Piazzola and G. Kaloshin, “Influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” J. Aerosol Sci. 1, S535–S536 (2004).

J. Piazzola and G. Kaloshin, “Performance evaluation of the coastal aerosol extinction code “MEDEX” with data from the Black Sea,” J. Aerosol Sci. 36, 341–359 (2005).
[CrossRef]

J. Atmos. Ocean. Opt. (2)

G. A. Kaloshin and S. A. Shishkin, “Calculation of the vision range for light signals from a navigation complex based on scanning electronically pumped semiconductor laser. Part II. Aerosol extinction and calculated results,” J. Atmos. Ocean. Opt. 20, 253–261 (2007).

G. A. Kaloshin, “Influence of wind conditions on aerosol extinction in the sea and coastal atmosphere surface layer,” J. Atmos. Ocean. Opt. 20, 571–576 (2007).

J. Atmos. Ocean. Technol. (1)

A. D. Clarke and V. N. Kapustin, “The Shoreline Environment Aerosol Study (SEAS): a context for marine aerosol measurements influenced by a coastal environment and long-range transport,” J. Atmos. Ocean. Technol. 20, 1351–1361(2003).
[CrossRef]

J. Opt. Technol. (1)

Opt. Eng. (2)

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Proc. SPIE (3)

S. G. Gathman and J. A. M. van Eijk, “Characterizing large aerosols at the lowest levels of marine atmosphere,” Proc. SPIE 3433, 41–52 (1998).
[CrossRef]

J. Piazzola, G. Kaloshin, G. de Leeuw, and J. A. M. van Eijk, “Aerosol extinction in coastal zone,” Proc. SPIE 5572, 94–100 (2004).
[CrossRef]

G. A. Kaloshin and G. G. Matvienko, “Aerosol model development for environmental monitoring in the coastal atmosphere surface layer,” Proc. SPIE 6733, 67330B (2007).
[CrossRef]

Other (13)

G. Kaloshin and J. Piazzola, “Influence of the large aerosol particles on the infrared propagation in coastal areas,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 429–432.

G. Kaloshin and J. Piazzola, “The coastal aerosol microphysical model,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 423–426.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Air Force Geophysics LaboratoryTR-79-0214, Environmental Research Papers No. 676, MA 01731 (1979).

H. E. Gerber, “Relative humidity parameterization of the Navy Aerosol Model (NAM),” Naval Research Laboratory Report 8956 (1985).

C. R. Zeisse, “NAM6: batch code for the Navy Aerosol Model,” Tech. Rep. 1804, Sparwar Systems Center (1999).

G. Kaloshin, “Spectral transparency of the sea and coastal atmosphere surface layer,” in Proceedings of the 23rd International Laser Radar Conference (2006), pp. 427–428.

E. R. Lewis and S. E. Schwartz, Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review, Geophysical Monograph Series (American Geophysical Union, 2004).
[CrossRef]

M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, 1988).

G. A. Kaloshin, J. Piazzola, and S. A. Shishkin, “Numerical modeling of influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer,” in Proceedings of 16th International Conference on Nucleation and Atmospheric Aerosols (2004), pp. 352–354.

G. A. Kaloshin and S. A. Shishkin, “The MAEXPRO program at the analysis of sea and coastal aerosol properties,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 363–365.

G. A. Kaloshin, “Aerosol extinction of optical radiation in coastal environment,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 195–198.

G. A. Kaloshin, “Influence of the particles sizes spectrum of the sea salt aerosol at estimations of the signal power,” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (V. E. Zuev Institute of Atmospheric Optics of Siberian Branch, Russian Academy of Sciences, 2009), pp. 365–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Observational (crosses) and model MaexPro simulated values (solid curve), (Piazzola et al. [4, 5, 6], 2004) of particle size distribution d N / d r for fetch X = 25 km and wind speed U = 9.5 10.5 m / s .

Fig. 2
Fig. 2

Observational (crosses) and model MAEXPRO simulated values (solid curve), (Piazzola et al. [4, 5, 6], 2004) of particle size distribution d N / d r for fetch X = 100 km and wind speed U = 12.5 13.5 m / s .

Fig. 3
Fig. 3

Main window of model MaexPro.

Fig. 4
Fig. 4

Calculated aerosol extinction spectra for different particle size ranges for typical meteorological input data and measurement geometry: RH = 80 % ; U = 3.5 m / s ; fetch = 70 km ; H = 10 m .

Fig. 5
Fig. 5

Calculated aerosol extinction spectra for the different particle size ranges for maximum values of meteorological input data and measurement geometry: RH = 95 % ; U = 7.5 m / s ; fetch = 120 km ; H = 25 m .

Fig. 6
Fig. 6

Aerosol extinction spectra for different values of height above sea level (H).

Fig. 7
Fig. 7

Spectral aerosol extinction coefficient σ ( λ ) versus fetch X: H = 20 m ; RH = 75 % ; U = 3.3 m / s .

Fig. 8
Fig. 8

Spectral aerosol extinction coefficient σ ( λ ) versus wind speed U: X = 3 km ; H = 20 m ;, RH = 75 % .

Fig. 9
Fig. 9

Spectral aerosol extinction coefficient σ ( λ ) versus wind speed U in the coastal environment: curve 1, data observed by Clarke and Kapustin [24] (2003), (2) calculations by MaexPro for H = 20 m , RH = 80 % , λ = 0.55 μm , X = 3 km .

Fig. 10
Fig. 10

Aerosol extinction coefficient σ ( λ ) versus wind speed U in the marine environment: line, linear regression of observational data obtained by Clarke and Kapustin [24] (2003), circles; calculation results by MaexPro for H = 5 m , RH = 80 % , λ = 0.55 μm , and X = 70 km .

Fig. 11
Fig. 11

Spectra of aerosol extinction coefficients σ ( λ ) for different values of wind speed U and fetch X calculated by MaexPro model: curve 1, U = 15 m / s and X = 30 km ; curve 2, U = 3.5 m / s and X = 3 km ; curve 3, U = 3.5 m / s and X = 30 km ; curve 4, U = 15 m / s and X = 3 km .

Fig. 12
Fig. 12

Spectra of aerosol extinction coefficients σ ( λ ) at H = 20 m for X = 3 km , U = 3.3 m / s , and for different RH values: diamonds, 66%; squares, 75%; triangles, 85%; circles, 90%.

Fig. 13
Fig. 13

Spectra of aerosol extinction coefficients σ ( λ ) at H = 20 m for X = 30 km , U = 3.3 m / s and for different RH values: diamonds, 66%; squares, 75%; triangles, 85%; open circles, 90%. Solid circles, results obtained during experimental campaign EOPACE when RH was within 80%–88%.

Fig. 14
Fig. 14

Spectrum of σ ( λ ) at H = 4 m for X = 30 km , U = 3.3 m / s and for different RH values: diamonds, 66%; squares, 75%; triangles, 85%; open circles, 90%. Solid circles, observational results received by IAO.

Tables (5)

Tables Icon

Table 1 Properties of the Sea-Salt Aerosol Particles by Size Range

Tables Icon

Table 2 Growth Factor Constants and Validity Range

Tables Icon

Table 3 Composition of the Aerosol Materials

Tables Icon

Table 4 Values of Aerosol Concentration (N), Area Distribution (A), and Volume Distribution (V) at Change of the Particle Size Spectrum ( Δ r ) for H = 10 m , U = 3.5 m / s , RH = 80 % , and X = 70 km

Tables Icon

Table 5 Values of Aerosol Concentration (N), Surface-Area Distribution (A), and Volume Distribution (V) versus Particle Size Range ( Δ r ) for H = 25 m , U = 7.5 m / s , RH = 95 % , and X = 120 km

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N d r = i = 1 4 A i f exp { C i ( ln ( r f r 0 i ) 2 ) } ,
A 1 = 2.51 · 10 4 ln ( X / X 0 ) + 1.5 · 10 5 , A 2 = 10 { ( 0.0296 ln ( X / X 0 ) 0.045 ) ( U / U 0 ) 0.385 ln ( X / X 0 ) + 2.1675 } , A 3 = 10 { ( 0.046 ln ( X / X 0 ) 0.0437 ) ( U / U 0 ) 0.465 ln ( X / X 0 ) 0.523 } , A 4 = 10 { ( 0.0095 ln ( X / X 0 ) + 0.0168 ) ( U / U 0 ) + 0.1424 ln ( X / X 0 ) 3.2 } , C 1 = 0.190 ln ( X / X 0 ) + 1.679 , C 2 = 0.148 ln ( X / X 0 ) + 1.698 , C 3 = 0.295 ln ( X / X 0 ) + 2.188 , C 4 = 10 ,
α ( λ ) = r = 0 r = K sca ( ρ , m ) d N d r π r 2 d r ,
σ ( λ ) = 0 K ext ( ρ , m ) d N d r π r 2 d r ,
( σ H σ 0 m ) = ( 0.037 1.017 RH H / 100 ) 0.84 ,

Metrics