Abstract

We report airborne measurements of CO2 column abundance conducted during two 2009 campaigns using a 2.05μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO2 column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO2 measurements from low Earth orbit pertinent to the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO2 2μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO2. The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
    [CrossRef]
  2. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
    [CrossRef]
  3. “A-SCOPE—Advanced Space Carbon and Climate Observation of Planet Earth, report for assessment,” ESA-SP1313/1 (European Space Agency, 2008), http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf.
  4. R. T. Menzies and M. T. Chahine, “Remote sensing with an airborne laser absorption spectrometer,” Appl. Opt. 13, 2840–2849 (1974).
    [CrossRef] [PubMed]
  5. G. B. Jacobs and L. R. Snowman, “Laser techniques for air pollution measurement,” IEEE J. Quantum Electron. 3, 603–605 (1967).
    [CrossRef]
  6. R. T. Menzies, “Remote sensing with infrared heterodyne radiometers,” Opto-electronics 4, 179–186 (1972).
    [CrossRef]
  7. E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the space shuttle,” Appl. Opt. 17, 624–630 (1978).
    [CrossRef] [PubMed]
  8. G. Mégie and R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef] [PubMed]
  9. D. Bruneau, F. Gibert, P. H. Flamant, and J. Pelon, “Complementary study of differential absorption lidar optimization in direct and heterodyne detections,” Appl. Opt. 45, 4898–4908(2006).
    [CrossRef] [PubMed]
  10. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
    [CrossRef] [PubMed]
  11. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008).
    [CrossRef] [PubMed]
  12. F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2 μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25, 1477–1497 (2008).
    [CrossRef]
  13. L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
    [CrossRef]
  14. R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006).
    [CrossRef]
  15. L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P. H. Flamant, G. Durry, N. Dumelie, B. Parvitte, and V. Zeninari, “Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases,” Appl. Opt. 48, 5475–5483(2009).
    [CrossRef] [PubMed]
  16. R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007).
    [CrossRef]
  17. J.-M. Hartmann, H. Tran, and G. C. Toon, “Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions,” Atmos. Chem. Phys. 9, 7303–7312 (2009).
    [CrossRef]
  18. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
    [CrossRef]
  19. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
    [CrossRef] [PubMed]
  20. G. D. Spiers, R. T. Menzies, D. M. Tratt, and M. Phillips, “The laser absorption spectrometer for carbon dioxide sink and source detection,” in Proceedings of the Second Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, 2002), paper PS1P4.
  21. Picarro, Inc., 480 Oakmead Parkway, Sunnyvale, CA 94085, USA.
  22. A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009).
    [CrossRef]
  23. G. C. Toon, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (personal communication, 2009).
  24. F. Niro, K. Jucks, and J.-M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra,” J. Quant. Spectrosc. Radiat. Transfer 95, 469–481 (2005).
    [CrossRef]
  25. F. B. Gallion and G. DeBarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE J. Quantum Electron. QE-20, 343–349 (1984).
    [CrossRef]
  26. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070–2074 (1986).
    [CrossRef]
  27. M. P. Van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
    [CrossRef]
  28. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
    [CrossRef]
  29. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed., Vol.  9 of Topics in Applied Physics (Springer-Verlag, 1975), Chap. 2.
    [CrossRef]
  30. M. Elbaum and M. C. Teich, “Heterodyne detection of random Gaussian signals in the optical and infrared: optimization of pulse duration,” Opt. Commun. 27, 257–261 (1978).
    [CrossRef]
  31. B. J. Rye and R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
    [CrossRef]
  32. Y. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 2: Applications,” Appl. Opt. 29, 4120–4132 (1990).
    [CrossRef] [PubMed]
  33. S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
    [CrossRef]
  34. Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
    [CrossRef]
  35. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
    [CrossRef]
  36. E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

2010 (1)

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

2009 (5)

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
[CrossRef] [PubMed]

L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P. H. Flamant, G. Durry, N. Dumelie, B. Parvitte, and V. Zeninari, “Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases,” Appl. Opt. 48, 5475–5483(2009).
[CrossRef] [PubMed]

J.-M. Hartmann, H. Tran, and G. C. Toon, “Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions,” Atmos. Chem. Phys. 9, 7303–7312 (2009).
[CrossRef]

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009).
[CrossRef]

2008 (4)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2 μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25, 1477–1497 (2008).
[CrossRef]

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008).
[CrossRef] [PubMed]

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

2007 (2)

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007).
[CrossRef]

2006 (3)

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006).
[CrossRef]

D. Bruneau, F. Gibert, P. H. Flamant, and J. Pelon, “Complementary study of differential absorption lidar optimization in direct and heterodyne detections,” Appl. Opt. 45, 4898–4908(2006).
[CrossRef] [PubMed]

2005 (1)

F. Niro, K. Jucks, and J.-M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra,” J. Quant. Spectrosc. Radiat. Transfer 95, 469–481 (2005).
[CrossRef]

2003 (2)

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef] [PubMed]

2001 (1)

P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

1998 (1)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

1997 (1)

1992 (1)

M. P. Van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

1990 (1)

1986 (1)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070–2074 (1986).
[CrossRef]

1984 (1)

F. B. Gallion and G. DeBarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE J. Quantum Electron. QE-20, 343–349 (1984).
[CrossRef]

1980 (1)

1978 (2)

E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the space shuttle,” Appl. Opt. 17, 624–630 (1978).
[CrossRef] [PubMed]

M. Elbaum and M. C. Teich, “Heterodyne detection of random Gaussian signals in the optical and infrared: optimization of pulse duration,” Opt. Commun. 27, 257–261 (1978).
[CrossRef]

1974 (1)

1972 (1)

R. T. Menzies, “Remote sensing with infrared heterodyne radiometers,” Opto-electronics 4, 179–186 (1972).
[CrossRef]

1967 (1)

G. B. Jacobs and L. R. Snowman, “Laser techniques for air pollution measurement,” IEEE J. Quantum Electron. 3, 603–605 (1967).
[CrossRef]

Abshire, J. B.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Alkhaled, A.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Allan, G. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Amediek, A.

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009).
[CrossRef]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Anderson, B. E.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Avery, M. A.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Barnes, B. W.

Benner, D. C.

R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007).
[CrossRef]

R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006).
[CrossRef]

Beyon, J. Y.

Biraud, S.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Blake, D. R.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Boesch, H.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Browell, E. V.

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Brown, L. R.

R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007).
[CrossRef]

R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006).
[CrossRef]

Bruneau, D.

Caron, J.

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009).
[CrossRef]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
[CrossRef] [PubMed]

Chahine, M. T.

Choi, Y.

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

Connor, B. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Crisp, D.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Cuesta, J.

F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2 μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25, 1477–1497 (2008).
[CrossRef]

Davis, K. J.

DeBarge, G.

F. B. Gallion and G. DeBarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE J. Quantum Electron. QE-20, 343–349 (1984).
[CrossRef]

DeCola, P. L.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Denning, A. S.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Devi, V. M.

R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007).
[CrossRef]

R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006).
[CrossRef]

Dobler, J.

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Doney, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Dumelie, N.

Durand, Y.

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009).
[CrossRef]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
[CrossRef] [PubMed]

Durry, G.

L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P. H. Flamant, G. Durry, N. Dumelie, B. Parvitte, and V. Zeninari, “Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases,” Appl. Opt. 48, 5475–5483(2009).
[CrossRef] [PubMed]

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

Ehret, G.

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009).
[CrossRef]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Elbaum, M.

M. Elbaum and M. C. Teich, “Heterodyne detection of random Gaussian signals in the optical and infrared: optimization of pulse duration,” Opt. Commun. 27, 257–261 (1978).
[CrossRef]

Fix, A.

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009).
[CrossRef]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Flamant, P. H.

Fung, I. Y.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Gallion, F. B.

F. B. Gallion and G. DeBarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE J. Quantum Electron. QE-20, 343–349 (1984).
[CrossRef]

Gibert, F.

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed., Vol.  9 of Topics in Applied Physics (Springer-Verlag, 1975), Chap. 2.
[CrossRef]

Gordley, L. L.

Grossel, A.

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

Grouiez, B.

Hardesty, R. M.

Harris, M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Harrison, F.

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Hartmann, J.-M.

J.-M. Hartmann, H. Tran, and G. C. Toon, “Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions,” Atmos. Chem. Phys. 9, 7303–7312 (2009).
[CrossRef]

F. Niro, K. Jucks, and J.-M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra,” J. Quant. Spectrosc. Radiat. Transfer 95, 469–481 (2005).
[CrossRef]

Hasselbrack, W. E.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Houweling, S.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Ismail, S.

Jacob, D. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Jacobs, G. B.

G. B. Jacobs and L. R. Snowman, “Laser techniques for air pollution measurement,” IEEE J. Quantum Electron. 3, 603–605 (1967).
[CrossRef]

Joly, L.

Jones, D. B. A.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Jucks, K.

F. Niro, K. Jucks, and J.-M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra,” J. Quant. Spectrosc. Radiat. Transfer 95, 469–481 (2005).
[CrossRef]

Karlsson, C.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Kawa, S. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Kiemle, C.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Kiley, C. M.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Koch, G. J.

Kooi, S.

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Kruger, M. S.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070–2074 (1986).
[CrossRef]

Kuppens, S. J. M.

M. P. Van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

Law, R. M.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Letalik, D.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Mandelberg, H. I.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070–2074 (1986).
[CrossRef]

Mao, J.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Marnas, F.

McGrath, P. A.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070–2074 (1986).
[CrossRef]

Mégie, G.

Menzies, R. T.

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef] [PubMed]

G. Mégie and R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

R. T. Menzies and M. T. Chahine, “Remote sensing with an airborne laser absorption spectrometer,” Appl. Opt. 13, 2840–2849 (1974).
[CrossRef] [PubMed]

R. T. Menzies, “Remote sensing with infrared heterodyne radiometers,” Opto-electronics 4, 179–186 (1972).
[CrossRef]

G. D. Spiers, R. T. Menzies, D. M. Tratt, and M. Phillips, “The laser absorption spectrometer for carbon dioxide sink and source detection,” in Proceedings of the Second Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, 2002), paper PS1P4.

Michalak, A. M.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Miller, C. E.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007).
[CrossRef]

R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006).
[CrossRef]

Modlin, E. A.

Moore, B.

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Nicholls, M. E.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Niro, F.

F. Niro, K. Jucks, and J.-M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra,” J. Quant. Spectrosc. Radiat. Transfer 95, 469–481 (2005).
[CrossRef]

Nolf, S.

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

Nolf, S. R.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

O’Brien, D.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

O’Brien, D. M.

P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

Olsen, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Parvitte, B.

L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P. H. Flamant, G. Durry, N. Dumelie, B. Parvitte, and V. Zeninari, “Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases,” Appl. Opt. 48, 5475–5483(2009).
[CrossRef] [PubMed]

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

Pawson, S.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Pearson, G. N.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Pelon, J.

Petros, M.

Petzar, P. J.

Phillips, M.

G. D. Spiers, R. T. Menzies, D. M. Tratt, and M. Phillips, “The laser absorption spectrometer for carbon dioxide sink and source detection,” in Proceedings of the Second Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, 2002), paper PS1P4.

Post, M. J.

Randerson, J. T.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Rayner, P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Rayner, P. J.

P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

Regalia-Jarlot, L.

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

Remsberg, E. E.

Richter, L. E.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070–2074 (1986).
[CrossRef]

Riris, H.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Rye, B. J.

Sachse, G.

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

Sachse, G. W.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Salawitch, R. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Sander, S. P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Sen, B.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Singh, U. N.

Snowman, L. R.

G. B. Jacobs and L. R. Snowman, “Laser techniques for air pollution measurement,” IEEE J. Quantum Electron. 3, 603–605 (1967).
[CrossRef]

Soja, A.

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

Spiers, G. D.

G. D. Spiers, R. T. Menzies, D. M. Tratt, and M. Phillips, “The laser absorption spectrometer for carbon dioxide sink and source detection,” in Proceedings of the Second Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, 2002), paper PS1P4.

Streets, D. G.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Sun, Z.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Suntharalingam, P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Tans, P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Teich, M. C.

M. Elbaum and M. C. Teich, “Heterodyne detection of random Gaussian signals in the optical and infrared: optimization of pulse duration,” Opt. Commun. 27, 257–261 (1978).
[CrossRef]

Thomas, X.

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

Thornhill, K. L.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Toon, G. C.

J.-M. Hartmann, H. Tran, and G. C. Toon, “Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions,” Atmos. Chem. Phys. 9, 7303–7312 (2009).
[CrossRef]

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

G. C. Toon, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (personal communication, 2009).

Toth, R. A.

R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007).
[CrossRef]

R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006).
[CrossRef]

Tran, H.

J.-M. Hartmann, H. Tran, and G. C. Toon, “Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions,” Atmos. Chem. Phys. 9, 7303–7312 (2009).
[CrossRef]

Tratt, D. M.

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef] [PubMed]

G. D. Spiers, R. T. Menzies, D. M. Tratt, and M. Phillips, “The laser absorption spectrometer for carbon dioxide sink and source detection,” in Proceedings of the Second Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, 2002), paper PS1P4.

Tsutsumi, Y.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Vadevu, K.

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

Van Exter, M. P.

M. P. Van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

Vaughan, J. M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Vay, S.

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

Vay, S. A.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

von der Heyden, P.

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

Weaver, C. J.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Wennberg, P. O.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Westberg, D. J.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Wirth, M.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Woerdman, J. P.

M. P. Van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

Wofsy, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Woo, J.

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

Woo, J-H.

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Yu, J.

Yung, Y. L.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

Zaccheo, T.

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Zeninari, V.

L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P. H. Flamant, G. Durry, N. Dumelie, B. Parvitte, and V. Zeninari, “Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases,” Appl. Opt. 48, 5475–5483(2009).
[CrossRef] [PubMed]

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

Zhao, Y.

Appl. Opt. (10)

R. T. Menzies and M. T. Chahine, “Remote sensing with an airborne laser absorption spectrometer,” Appl. Opt. 13, 2840–2849 (1974).
[CrossRef] [PubMed]

E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the space shuttle,” Appl. Opt. 17, 624–630 (1978).
[CrossRef] [PubMed]

G. Mégie and R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

Y. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 2: Applications,” Appl. Opt. 29, 4120–4132 (1990).
[CrossRef] [PubMed]

B. J. Rye and R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
[CrossRef]

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef] [PubMed]

D. Bruneau, F. Gibert, P. H. Flamant, and J. Pelon, “Complementary study of differential absorption lidar optimization in direct and heterodyne detections,” Appl. Opt. 45, 4898–4908(2006).
[CrossRef] [PubMed]

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008).
[CrossRef] [PubMed]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
[CrossRef] [PubMed]

L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P. H. Flamant, G. Durry, N. Dumelie, B. Parvitte, and V. Zeninari, “Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases,” Appl. Opt. 48, 5475–5483(2009).
[CrossRef] [PubMed]

Appl. Phys. B (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Atmos. Chem. Phys. (1)

J.-M. Hartmann, H. Tran, and G. C. Toon, “Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions,” Atmos. Chem. Phys. 9, 7303–7312 (2009).
[CrossRef]

Atmos. Meas. Tech. Discuss. (1)

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009).
[CrossRef]

EOS (1)

E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Geophys. Res. Lett. (1)

P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

IEEE J. Quantum Electron. (4)

G. B. Jacobs and L. R. Snowman, “Laser techniques for air pollution measurement,” IEEE J. Quantum Electron. 3, 603–605 (1967).
[CrossRef]

F. B. Gallion and G. DeBarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE J. Quantum Electron. QE-20, 343–349 (1984).
[CrossRef]

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070–2074 (1986).
[CrossRef]

M. P. Van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2 μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25, 1477–1497 (2008).
[CrossRef]

J. Geophys. Res. (3)

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007).
[CrossRef]

S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003).
[CrossRef]

Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008).
[CrossRef]

J. Mod. Opt. (1)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

J. Mol. Spectrosc. (2)

R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006).
[CrossRef]

R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006).
[CrossRef]

F. Niro, K. Jucks, and J.-M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra,” J. Quant. Spectrosc. Radiat. Transfer 95, 469–481 (2005).
[CrossRef]

Opt. Commun. (1)

M. Elbaum and M. C. Teich, “Heterodyne detection of random Gaussian signals in the optical and infrared: optimization of pulse duration,” Opt. Commun. 27, 257–261 (1978).
[CrossRef]

Opto-electronics (1)

R. T. Menzies, “Remote sensing with infrared heterodyne radiometers,” Opto-electronics 4, 179–186 (1972).
[CrossRef]

Tellus B (1)

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010).
[CrossRef]

Other (5)

“A-SCOPE—Advanced Space Carbon and Climate Observation of Planet Earth, report for assessment,” ESA-SP1313/1 (European Space Agency, 2008), http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed., Vol.  9 of Topics in Applied Physics (Springer-Verlag, 1975), Chap. 2.
[CrossRef]

G. C. Toon, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (personal communication, 2009).

G. D. Spiers, R. T. Menzies, D. M. Tratt, and M. Phillips, “The laser absorption spectrometer for carbon dioxide sink and source detection,” in Proceedings of the Second Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, 2002), paper PS1P4.

Picarro, Inc., 480 Oakmead Parkway, Sunnyvale, CA 94085, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

LAS transceiver functional layout. DDS, direct digital synthesizer.

Fig. 2
Fig. 2

(a) LAS with optical bench horizontal, telescope side up, base plate in background. (b) LAS transceiver in hermetically sealed enclosure. CG, center of gravity.

Fig. 3
Fig. 3

(a) Twin Otter aircraft. (b) LAS transceiver assembly mounted on frame and integrated onto Twin Otter above nadir port hole, with tilt angle adjusted to provide 14   deg off-nadir angle during nominal cruise conditions.

Fig. 4
Fig. 4

Measurement uncertainty due to speckle fluctuation statistics. Relative uncertainty depends on distance travelled, or spatial resolution along ground-track, independent of aircraft platform.

Fig. 5
Fig. 5

Flow diagram of algorithm for retrieval of column-average CO 2 mixing ratio.

Fig. 6
Fig. 6

Weighting function, w ( z ) , for the LAS on-line, off-line frequency pair: 31 July 2009 atmosphere in vicinity of ARM SGP Oklahoma site.

Fig. 7
Fig. 7

On-line (blue) and off-line (red) signal power and power ratio versus time during 31 July 2009 during west-to-east overpass at 10 kft altitude.

Fig. 8
Fig. 8

Atmospheric CO 2 profiles over Oklahoma ARM SGP vicinity from airborne in situ measurements during spirals.

Fig. 9
Fig. 9

(a) Column-average CO 2 mixing ratio retrieval, 31 July 2009, aircraft west-to-east overpass at 10 kft altitude. Overpass-average retrieval, 382 ppmv . Column boundaries: upper (aircraft altitude) 3177 m overpass average, lower (surface elevation) 302 m ground-track average. (b) Column-average CO 2 mixing ratio retrieval, 4 August 2009, aircraft east-to-west overpass at 9 kft altitude. Overpass-average retrieval, 393 ppmv . Column boundaries: upper (aircraft altitude) 2960 m overpass average, lower (surface elevation) 302 m ground-track average.

Tables (3)

Tables Icon

Table 1 JPL Airborne LAS Instrument Parameters

Tables Icon

Table 2 CO 2 Measurement Uncertainty/Error Budget

Tables Icon

Table 3 Summary of ln ( ratio ) = 2 ( DAOD ) Measurement Stability over El Mirage, Mean Value, and Standard Deviation (SD) for Multiple Overpasses at Each Altitude

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

DAOD = ln ( τ ) .
ln ( P on / P off ) = ( 2 DAOD ) .
DAOD = R 1 R 2 ( σ on ( p , T ) σ off ( p , T ) ) n ( z ) d z ,
n ( z ) = q ( z ) ( 1 q H 2 O ( z ) ) n air ( z ) ,
δ ( DAOD ) z = n ( z ) WF ( z ) [ ( σ on σ off ) ] SURFACE δ z ,
ln ( P off / P on ) = ( 2 DAOD ) ,
< [ φ ( t ) φ ( t τ d ) ] 2 > = | τ d | / τ c ,
S 1 ( ω ) = a I 1 I 2 exp ( τ d / τ c ) δ ( ω ω h ) .
S 2 ( ω ) = ( a I 1 I 2 τ c ) / π 1 + ( ω ω h ) 2 τ c 2 · { 1 exp ( τ d τ c ) [ cos ( ω ω h ) τ d + ( sin ( ω ω h ) τ d ) ( ω ω h ) τ c ] } .
P I ( I ) = 1 I exp ( I I ) ,
SNR H = { ( δ / ( δ + 1 ) } ( M T ) 1 / 2 ,
f ( x ; k , θ ) = x k 1 [ exp ( x / θ ) / θ k Γ ( k ) ] for θ > 0 ,

Metrics