Abstract

Oscillation exists at the high-frequency band edge in the diffraction spectrum of a volume hologram. An air-doping model of a volume hologram is proposed to explain the phenomenon. The numerical results show good agreement with the experimental results, which cannot be explained by the conventional models. The results show that the position of air impurity is the key factor to control the number and width of the oscillations. The present work gives a new approach to generate and control the defect mode in a holographic photonic crystal.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  2. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  3. F. G. Kaspar, “Diffraction by thick periodically stratified gratings with complex dielectric constant,” J. Opt. Soc. Am. 63, 37–45 (1973).
    [CrossRef]
  4. R. Mangnusson and T. K. Gaylord, “Analysis of multi-wave diffraction of thick gratings,” J. Opt. Soc. Am. 67, 1165–1170 (1977).
    [CrossRef]
  5. M. G. Moharam and T. K. Gaylord, “Coupled-wave analysis of reflection gratings,” Appl. Opt. 20, 240–244 (1981).
    [CrossRef] [PubMed]
  6. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  7. D. Liu and J. Zhou, “Nonlinear analysis for a reflection hologram,” Opt. Commun. 107, 471–479 (1994).
    [CrossRef]
  8. D. Liu, G. Manivannan, H. H. Arsenault, and R. A. Lessard, “Asymmetry in the diffraction spectrum of a hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
    [CrossRef]
  9. X. Wang, F. Wang, L. Cui, and D. Liu, “Analysis of influence on the properties of heterogeneous volume hologram by the structures of bandgaps,” Opt. Commun. 221, 289–293(2003).
    [CrossRef]
  10. Z. Wang, J. Zhou, and D. Liu, “Investigation of a peculiar bifurcation phenomenon in diffraction spectra of volume holograms,” Opt. Lett. 31, 3270–3272 (2006).
    [CrossRef] [PubMed]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
    [CrossRef] [PubMed]
  12. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
    [CrossRef] [PubMed]
  13. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
    [CrossRef]
  14. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “A new way to make three-dimensional photonic crystals,” Nature 404, 53–56 (2000).
    [CrossRef] [PubMed]
  15. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
    [CrossRef]
  16. L. J. Wu, Y. C. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102 (2005).
    [CrossRef]
  17. Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
    [CrossRef]
  18. T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
    [CrossRef]
  19. Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete band gaps in the visible range achieved by a low-refractive-index material,” Adv. Mater. 20, 2337–2340 (2008).
    [CrossRef]
  20. L. Cui, H. Gao, P. Dong, and D. Liu, “Diffraction from angular multiplexing slanted volume hologram grating,” Optik (Jena) 116, 118–122 (2005).
    [CrossRef]
  21. M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, 1980).

2008

T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
[CrossRef]

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete band gaps in the visible range achieved by a low-refractive-index material,” Adv. Mater. 20, 2337–2340 (2008).
[CrossRef]

2007

Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
[CrossRef]

2006

2005

L. J. Wu, Y. C. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

L. Cui, H. Gao, P. Dong, and D. Liu, “Diffraction from angular multiplexing slanted volume hologram grating,” Optik (Jena) 116, 118–122 (2005).
[CrossRef]

2003

X. Wang, F. Wang, L. Cui, and D. Liu, “Analysis of influence on the properties of heterogeneous volume hologram by the structures of bandgaps,” Opt. Commun. 221, 289–293(2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

2000

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “A new way to make three-dimensional photonic crystals,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

1997

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

1995

D. Liu, G. Manivannan, H. H. Arsenault, and R. A. Lessard, “Asymmetry in the diffraction spectrum of a hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

1994

D. Liu and J. Zhou, “Nonlinear analysis for a reflection hologram,” Opt. Commun. 107, 471–479 (1994).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

1981

1977

1973

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Arsenault, H. H.

D. Liu, G. Manivannan, H. H. Arsenault, and R. A. Lessard, “Asymmetry in the diffraction spectrum of a hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, 1980).

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “A new way to make three-dimensional photonic crystals,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Chan, C. T.

L. J. Wu, Y. C. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Chen, Y. L.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Cui, L.

L. Cui, H. Gao, P. Dong, and D. Liu, “Diffraction from angular multiplexing slanted volume hologram grating,” Optik (Jena) 116, 118–122 (2005).
[CrossRef]

X. Wang, F. Wang, L. Cui, and D. Liu, “Analysis of influence on the properties of heterogeneous volume hologram by the structures of bandgaps,” Opt. Commun. 221, 289–293(2003).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “A new way to make three-dimensional photonic crystals,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Dong, P.

L. Cui, H. Gao, P. Dong, and D. Liu, “Diffraction from angular multiplexing slanted volume hologram grating,” Optik (Jena) 116, 118–122 (2005).
[CrossRef]

Gao, H.

Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
[CrossRef]

L. Cui, H. Gao, P. Dong, and D. Liu, “Diffraction from angular multiplexing slanted volume hologram grating,” Optik (Jena) 116, 118–122 (2005).
[CrossRef]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Gaylord, T. K.

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “A new way to make three-dimensional photonic crystals,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

Kaspar, F. G.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Lessard, R. A.

D. Liu, G. Manivannan, H. H. Arsenault, and R. A. Lessard, “Asymmetry in the diffraction spectrum of a hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Liu, D.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete band gaps in the visible range achieved by a low-refractive-index material,” Adv. Mater. 20, 2337–2340 (2008).
[CrossRef]

T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
[CrossRef]

Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
[CrossRef]

Z. Wang, J. Zhou, and D. Liu, “Investigation of a peculiar bifurcation phenomenon in diffraction spectra of volume holograms,” Opt. Lett. 31, 3270–3272 (2006).
[CrossRef] [PubMed]

L. Cui, H. Gao, P. Dong, and D. Liu, “Diffraction from angular multiplexing slanted volume hologram grating,” Optik (Jena) 116, 118–122 (2005).
[CrossRef]

X. Wang, F. Wang, L. Cui, and D. Liu, “Analysis of influence on the properties of heterogeneous volume hologram by the structures of bandgaps,” Opt. Commun. 221, 289–293(2003).
[CrossRef]

D. Liu, G. Manivannan, H. H. Arsenault, and R. A. Lessard, “Asymmetry in the diffraction spectrum of a hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

D. Liu and J. Zhou, “Nonlinear analysis for a reflection hologram,” Opt. Commun. 107, 471–479 (1994).
[CrossRef]

Mangnusson, R.

Manivannan, G.

D. Liu, G. Manivannan, H. H. Arsenault, and R. A. Lessard, “Asymmetry in the diffraction spectrum of a hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

Moharam, M. G.

Pang, Y. K.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Ren, Z.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete band gaps in the visible range achieved by a low-refractive-index material,” Adv. Mater. 20, 2337–2340 (2008).
[CrossRef]

Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “A new way to make three-dimensional photonic crystals,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Su, H. M.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Tam, W. Y.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “A new way to make three-dimensional photonic crystals,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Wang, F.

X. Wang, F. Wang, L. Cui, and D. Liu, “Analysis of influence on the properties of heterogeneous volume hologram by the structures of bandgaps,” Opt. Commun. 221, 289–293(2003).
[CrossRef]

Wang, H. Z.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Wang, X.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

X. Wang, F. Wang, L. Cui, and D. Liu, “Analysis of influence on the properties of heterogeneous volume hologram by the structures of bandgaps,” Opt. Commun. 221, 289–293(2003).
[CrossRef]

Wang, Z.

T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
[CrossRef]

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete band gaps in the visible range achieved by a low-refractive-index material,” Adv. Mater. 20, 2337–2340 (2008).
[CrossRef]

Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
[CrossRef]

Z. Wang, J. Zhou, and D. Liu, “Investigation of a peculiar bifurcation phenomenon in diffraction spectra of volume holograms,” Opt. Lett. 31, 3270–3272 (2006).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, 1980).

Wong, K. S.

L. J. Wu, Y. C. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Wu, L. J.

L. J. Wu, Y. C. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Xu, J. F.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

Zeng, Z. H.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Zhai, T.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete band gaps in the visible range achieved by a low-refractive-index material,” Adv. Mater. 20, 2337–2340 (2008).
[CrossRef]

T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
[CrossRef]

Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
[CrossRef]

Zhang, X.

T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
[CrossRef]

Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
[CrossRef]

Zhao, R.

T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
[CrossRef]

Zhong, Y. C.

L. J. Wu, Y. C. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Zhou, J.

T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
[CrossRef]

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete band gaps in the visible range achieved by a low-refractive-index material,” Adv. Mater. 20, 2337–2340 (2008).
[CrossRef]

Z. Wang, J. Zhou, and D. Liu, “Investigation of a peculiar bifurcation phenomenon in diffraction spectra of volume holograms,” Opt. Lett. 31, 3270–3272 (2006).
[CrossRef] [PubMed]

D. Liu and J. Zhou, “Nonlinear analysis for a reflection hologram,” Opt. Commun. 107, 471–479 (1994).
[CrossRef]

Adv. Mater.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete band gaps in the visible range achieved by a low-refractive-index material,” Adv. Mater. 20, 2337–2340 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

L. J. Wu, Y. C. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

T. Zhai, Z. Wang, R. Zhao, J. Zhou, D. Liu, and X. Zhang, “A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere,” Appl. Phys. Lett. 93, 201902 (2008).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Appl. Phys.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

J. Mod. Opt.

D. Liu, G. Manivannan, H. H. Arsenault, and R. A. Lessard, “Asymmetry in the diffraction spectrum of a hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

J. Opt. Soc. Am.

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “A new way to make three-dimensional photonic crystals,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Opt. Commun.

D. Liu and J. Zhou, “Nonlinear analysis for a reflection hologram,” Opt. Commun. 107, 471–479 (1994).
[CrossRef]

X. Wang, F. Wang, L. Cui, and D. Liu, “Analysis of influence on the properties of heterogeneous volume hologram by the structures of bandgaps,” Opt. Commun. 221, 289–293(2003).
[CrossRef]

Opt. Lett.

Optik (Jena)

L. Cui, H. Gao, P. Dong, and D. Liu, “Diffraction from angular multiplexing slanted volume hologram grating,” Optik (Jena) 116, 118–122 (2005).
[CrossRef]

Phys. Rev. B

Z. Ren, Z. Wang, T. Zhai, H. Gao, D. Liu, and X. Zhang, “Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction,” Phys. Rev. B 76, 035120 (2007).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

Other

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental layout. L is convex lens, M represents a mirror, E is the recording material (DCG), P represents the photomultiplier tube, and H is the volume hologram. (a) Setup for recording volume hologram. (b) Measuring setup for the volume hologram.

Fig. 2
Fig. 2

Diffraction spectra of the reflection hologram grating made of DCG with a thickness of 36 μm when the light waves are incident normally. Wavelength of the recording beam was 488 nm .

Fig. 3
Fig. 3

Special diffraction spectra of the volume hologram made of DCG with the thickness of 36 μm and wavelength of the recording beam was 488 nm .

Fig. 4
Fig. 4

Comparison between the numerical simulation (black curve) and the experimental results (gray curve) of volume hologram with different air bubbles. (a) The size and the position of the air bubble are 0.04 μm and 2.98 μm from the surface. (b) The size and the position of the air bubble are 0.10 μm and 1.545 μm from the surface.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 exp ( α g z ) + I 2 exp ( α g ( T 0 z ) ) + 2 I 1 I 2 exp ( α g T 0 / 2 ) cos ( k 0 z + φ ) .
n = n 0 + Δ n + Δ n cos ( k z + φ ) ,
n = { 1 within the air bubble n 0 + Δ n + Δ n cos ( k z + φ ) elsewhere .
n = { 1 z 0 < z < z 1 n 0 + Δ n + Δ n cos ( k z + φ 0 ) elsewhere.
M j = [ cos δ j i η j sin δ j i η j sin δ j cos δ j ] ,
η j = { ε j / μ j cos θ j TE μ j / ε j cos θ j TM .
[ B C ] = { j = 1 k [ cos δ j i η j sin δ j i η j sin δ j cos δ j ] } [ 1 N k + 1 ] .
R = ( N 0 B C N 0 B + C ) ( N 0 B C N 0 B + C ) * .

Metrics