Abstract

In this paper, we propose a novel (to our knowledge) broadband and polarization-insensitive dual-core photonic crystal fiber (PCF) coupler through the introduction of an elliptical-shaped central air hole to offset the slight birefringence arising from the dual core. With a full vectorial finite element method and anisotropic perfectly matched layers as the external boundaries, the impact of several fiber parameters on the coupling characteristics of dual-core PCF is investigated in detail. Through optimizing the main fiber parameters, including core diameter, size and ellipticity of the central air hole, and refractive index difference, broadband and polarization-insensitive characteristics are achieved in the wavelength range from 0.8 to 1.7μm. The variation of the coupling ratio is stabilized at 50±1%, and the coupling ratio difference between x polarization and y polarization is less than 2% over the wavelength range. This dual-core PCF makes it easier to develop a 3dB coupler over a wide wavelength for passive optical networks and large optical systems.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription