Abstract

A stable 10GHz pedestal-free short pulse generation scheme consisting of cascaded commercial LiNbO3 modulators has been proposed and successfully demonstrated experimentally. Fiber-based pulse compression and reshaping stages have been utilized to obtain a 1.38ps optical pulse train with very little pedestal and 132fs timing jitter. Excellent performance of multiplexing from 10  Gbits/s to 160Gbits/s using this method indicates good potential for application in ultrahigh-speed optical time-division-multiplexing systems.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s−70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
    [CrossRef]
  2. N. Yamada, H. Ohta, and S. Nogiwa, “Jitter-free optical sampling system using passively mode-locked fibre laser,” Electron. Lett. 38, 1044–1045 (2002).
    [CrossRef]
  3. C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .
  4. Y. Yang, C. Lou, and Y. Gao, “Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator,” Opt. Eng. 46, 055004 (2007).
    [CrossRef]
  5. M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” presented at European Conference on Optical Communication, Stockholm, Sweden (September 2004), paper Tu 3.4.3.
  6. H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
    [CrossRef]
  7. Q. Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, “Nearly chirp- and pedestal-free pulse compression in nonlinear fiber Bragg gratings,” J. Opt. Soc. Am. B 26, 432–443 (2009).
    [CrossRef]
  8. K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comblike profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41, 688–690 (2005).
    [CrossRef]
  9. T. Hirooka, K.-I. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s−600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photonics Technol. Lett. 18, 2647–2649 (2006).
    [CrossRef]
  10. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99(2008).
    [CrossRef]
  11. M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
    [CrossRef]
  12. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
    [CrossRef]

2009 (1)

2008 (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99(2008).
[CrossRef]

2007 (2)

Y. Yang, C. Lou, and Y. Gao, “Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator,” Opt. Eng. 46, 055004 (2007).
[CrossRef]

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

2006 (2)

T. Hirooka, K.-I. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s−600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photonics Technol. Lett. 18, 2647–2649 (2006).
[CrossRef]

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

2005 (1)

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comblike profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41, 688–690 (2005).
[CrossRef]

2002 (1)

N. Yamada, H. Ohta, and S. Nogiwa, “Jitter-free optical sampling system using passively mode-locked fibre laser,” Electron. Lett. 38, 1044–1045 (2002).
[CrossRef]

2000 (2)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s−70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
[CrossRef]

Bai, N.

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

Chang, G.-Q.

M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
[CrossRef]

Doi, M.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” presented at European Conference on Optical Communication, Stockholm, Sweden (September 2004), paper Tu 3.4.3.

Eggleton, B. J.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

Ferber, S.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Fu, L.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

Futami, F.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” presented at European Conference on Optical Communication, Stockholm, Sweden (September 2004), paper Tu 3.4.3.

Gao, Y.

Y. Yang, C. Lou, and Y. Gao, “Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator,” Opt. Eng. 46, 055004 (2007).
[CrossRef]

Gao, Y.-Z.

M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
[CrossRef]

Hagiuda, K.-I.

T. Hirooka, K.-I. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s−600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photonics Technol. Lett. 18, 2647–2649 (2006).
[CrossRef]

Han, M.

M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
[CrossRef]

Hiroishi, J.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comblike profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41, 688–690 (2005).
[CrossRef]

Hirooka, T.

T. Hirooka, K.-I. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s−600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photonics Technol. Lett. 18, 2647–2649 (2006).
[CrossRef]

Hu, H.

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

Huttl, B.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Igarashi, K.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comblike profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41, 688–690 (2005).
[CrossRef]

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99(2008).
[CrossRef]

Kaiser, R.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Kroh, M.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Kumakura, T.

T. Hirooka, K.-I. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s−600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photonics Technol. Lett. 18, 2647–2649 (2006).
[CrossRef]

Li, Q.

Li, Y.-H.

M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
[CrossRef]

Lou, C.

Y. Yang, C. Lou, and Y. Gao, “Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator,” Opt. Eng. 46, 055004 (2007).
[CrossRef]

Lou, C.-Y.

M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
[CrossRef]

Ludwig, R.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Moss, D. J.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

Nakazawa, M.

T. Hirooka, K.-I. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s−600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photonics Technol. Lett. 18, 2647–2649 (2006).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s−70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Nakkeeran, K.

Namiki, S.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99(2008).
[CrossRef]

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comblike profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41, 688–690 (2005).
[CrossRef]

Nogiwa, S.

N. Yamada, H. Ohta, and S. Nogiwa, “Jitter-free optical sampling system using passively mode-locked fibre laser,” Electron. Lett. 38, 1044–1045 (2002).
[CrossRef]

Ohta, H.

N. Yamada, H. Ohta, and S. Nogiwa, “Jitter-free optical sampling system using passively mode-locked fibre laser,” Electron. Lett. 38, 1044–1045 (2002).
[CrossRef]

Onaka, H.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” presented at European Conference on Optical Communication, Stockholm, Sweden (September 2004), paper Tu 3.4.3.

Osawa, K.

T. Hirooka, K.-I. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s−600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photonics Technol. Lett. 18, 2647–2649 (2006).
[CrossRef]

Rochette, M.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

Schmidt-Langhorst, C.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Schubert, C.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Senthilnathan, K.

Sugiyama, M.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” presented at European Conference on Optical Communication, Stockholm, Sweden (September 2004), paper Tu 3.4.3.

Ta’eed, V.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s−70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Wai, P. K. A.

Wang, W.

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

Watanabe, S.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” presented at European Conference on Optical Communication, Stockholm, Sweden (September 2004), paper Tu 3.4.3.

We, Y.

M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
[CrossRef]

Weber, H. G.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Yagi, T.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comblike profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41, 688–690 (2005).
[CrossRef]

Yamada, N.

N. Yamada, H. Ohta, and S. Nogiwa, “Jitter-free optical sampling system using passively mode-locked fibre laser,” Electron. Lett. 38, 1044–1045 (2002).
[CrossRef]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s−70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Yang, E.

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

Yang, Y.

Y. Yang, C. Lou, and Y. Gao, “Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator,” Opt. Eng. 46, 055004 (2007).
[CrossRef]

Yu, J.

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

Zhang, A.

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

Zhang, L.

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

M. Han, C.-Y. Lou, Y. We, G.-Q. Chang, Y.-Z. Gao, and Y.-H. Li, “Generation of pedestal-free 10 GHz pulses from a comblike dispersion profiled fiber compressor and its application in supercontinuum generation,” Chin. Phys. Lett. 17, 806–809(2000).
[CrossRef]

Electron. Lett. (4)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s−70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

N. Yamada, H. Ohta, and S. Nogiwa, “Jitter-free optical sampling system using passively mode-locked fibre laser,” Electron. Lett. 38, 1044–1045 (2002).
[CrossRef]

H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang, and E. Yang, “10 GHz1.6 ps optical pulse generation with 84 fs timing jitter,” Electron. Lett. 43, 1222–1223 (2007).
[CrossRef]

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comblike profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41, 688–690 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. Hirooka, K.-I. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s−600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photonics Technol. Lett. 18, 2647–2649 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99(2008).
[CrossRef]

Opt. Eng. (1)

Y. Yang, C. Lou, and Y. Gao, “Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator,” Opt. Eng. 46, 055004 (2007).
[CrossRef]

Other (2)

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” presented at European Conference on Optical Communication, Stockholm, Sweden (September 2004), paper Tu 3.4.3.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser, and H. G. Weber, “40 GHzsemiconductor mode-locked laser pulse source for 160 Gbit/sRZ-DPSK data transmission,” in 31st European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 167–168 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of 10 GHz ultrashort pulse generator. Pulse intensity profiles in different sections are depicted.

Fig. 2
Fig. 2

Optimal synchronization of the phase and intensity modulations. ω 0 , ω m , α represent carrier angular frequency, modulation angular frequency, and phase modulation index, respectively.

Fig. 3
Fig. 3

Numerical simulation of single pulse propagation and evolution in CDPF. All parameters are identical to experimental setup.

Fig. 4
Fig. 4

Numerical simulation: comparison between single-pulse waveforms in different stages. Remaining pedestal can be effectively eliminated after the reshaping stage.

Fig. 5
Fig. 5

Phase noise spectral density at 10 GHz in different stages. Calculated rms timing jitter from top to bottom: 217 fs (before DCF), 137 fs (after DCF), 132 fs (compressed output), 102 fs (RF source HP83711B).

Fig. 6
Fig. 6

Waveform of the pulse train (a) after DCF-12 ps, (b) after soliton compression stage— 2.48 ps , (c) after reshaping stage— 1.38 ps .

Fig. 7
Fig. 7

Eye diagram of the multiplexed 160 Gbits / s signal. The fluctuation among adjacent channels in the eye diagram should be attributed to the imperfect performance of the multiplexers.

Metrics