Abstract

We demonstrate micrometer scale mid-IR lenses for integrated optics, using solution-based inkjet printing techniques and subsequent processing. Arsenic sulfide spherical microlenses with diameters of 10350μm and focal lengths of 10700μm have been fabricated. The baking conditions can be used to tune the precise focal length.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
    [CrossRef]
  2. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
    [CrossRef]
  3. A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
    [CrossRef]
  4. Z. Yin and X. Tang, “A review of energy bandgap engineering in iii–v semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51, 6–15 (2007).
    [CrossRef]
  5. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
    [CrossRef]
  6. C. Tsay, E. Mujagic, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18, 15523–15530 (2010).
    [CrossRef] [PubMed]
  7. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
    [CrossRef] [PubMed]
  8. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009).
    [CrossRef] [PubMed]
  9. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
    [CrossRef]
  10. A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
  11. S. J. Madden, T. Han, D. A. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides fabricated by thermal nanoimprint lithography,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OMH3.
  12. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett. 35, 3324–3326(2010).
    [CrossRef] [PubMed]
  13. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18, 26744–26753 (2010).
    [CrossRef] [PubMed]
  14. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
    [CrossRef] [PubMed]
  15. H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
    [CrossRef]
  16. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
    [CrossRef]
  17. H. Hisakuni and K. Tanaka, “Optical fabrication of microlenses in chalcogenide glasses,” Opt. Lett. 20, 958–960(1995).
    [CrossRef] [PubMed]
  18. K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C.-L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids (to be published).
  19. S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
    [CrossRef]
  20. D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
    [CrossRef]
  21. E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
    [CrossRef]
  22. F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21, 648–650 (2009).
    [CrossRef]
  23. Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
    [CrossRef]
  24. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18, 5472–5480 (2010).
    [CrossRef] [PubMed]
  25. G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979–6982 (1982).
    [CrossRef]
  26. H. Zhao, L. Yu, and Y. Huang, “Investigation of a chemically treated inp(1Â 0Â 0) surface during hydrophilic wafer bonding process,” Mater. Sci. Eng. B 128, 93–97 (2006).
    [CrossRef]
  27. G. Chern, I. Lauks, and K. Norian, “Spin-coated amorphous chalcogenide films: photoinduced effects,” Thin Solid Films 123, 289–296 (1985).
    [CrossRef]

2010 (5)

2009 (2)

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21, 648–650 (2009).
[CrossRef]

L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

H. Zhao, L. Yu, and Y. Huang, “Investigation of a chemically treated inp(1Â 0Â 0) surface during hydrophilic wafer bonding process,” Mater. Sci. Eng. B 128, 93–97 (2006).
[CrossRef]

2005 (2)

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[CrossRef]

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

2004 (1)

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

2002 (1)

A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

2001 (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

2000 (1)

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

1998 (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[CrossRef]

1995 (2)

H. Hisakuni and K. Tanaka, “Optical fabrication of microlenses in chalcogenide glasses,” Opt. Lett. 20, 958–960(1995).
[CrossRef] [PubMed]

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
[CrossRef]

1994 (1)

D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

1985 (1)

G. Chern, I. Lauks, and K. Norian, “Spin-coated amorphous chalcogenide films: photoinduced effects,” Thin Solid Films 123, 289–296 (1985).
[CrossRef]

1982 (1)

G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979–6982 (1982).
[CrossRef]

Aegerter, M.

S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[CrossRef]

Aellen, T.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Arnold, C. B.

Baillargeon, J.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Baker, N. J.

Beck, M.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Biehl, S.

S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[CrossRef]

Bonaccurso, E.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[CrossRef]

Bulla, D. A.

S. J. Madden, T. Han, D. A. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides fabricated by thermal nanoimprint lithography,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OMH3.

Butt, H.-J.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[CrossRef]

Capasso, F.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Chao, C.-L.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C.-L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids (to be published).

Chen, F.-C.

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21, 648–650 (2009).
[CrossRef]

Chen, T.

D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Chern, G.

G. Chern, I. Lauks, and K. Norian, “Spin-coated amorphous chalcogenide films: photoinduced effects,” Thin Solid Films 123, 289–296 (1985).
[CrossRef]

Chern, G. C.

G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979–6982 (1982).
[CrossRef]

Chien, H. H.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C.-L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids (to be published).

Cho, A.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Cho, A. Y.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

Choi, D.-Y.

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Cox, W.

D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Danzebrink, R.

S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[CrossRef]

Ding, Y.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

Dua, J.

Eggleton, B. J.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

Faist, J.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Finsterbusch, K.

Fu, L.

Fu, W. Y.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C.-L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids (to be published).

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

Gisin, N.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Gmachl, C.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Gmachl, C. F.

Graf, K.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[CrossRef]

Han, T.

S. J. Madden, T. Han, D. A. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides fabricated by thermal nanoimprint lithography,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OMH3.

Hankeln, B.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[CrossRef]

Hayes, D.

D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Herzig, H. P.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Hisakuni, H.

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
[CrossRef]

H. Hisakuni and K. Tanaka, “Optical fabrication of microlenses in chalcogenide glasses,” Opt. Lett. 20, 958–960(1995).
[CrossRef] [PubMed]

Hô, N.

Huang, S. W.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C.-L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids (to be published).

Huang, W.-K.

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21, 648–650 (2009).
[CrossRef]

Huang, Y.

H. Zhao, L. Yu, and Y. Huang, “Investigation of a chemically treated inp(1Â 0Â 0) surface during hydrophilic wafer bonding process,” Mater. Sci. Eng. B 128, 93–97 (2006).
[CrossRef]

Hutchinson, A.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

Jain, H.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

Kang, S. Y.

Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
[CrossRef]

Karstad, K.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Kim, S. H.

Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
[CrossRef]

Kosterev, A.

A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

Labadie, L.

Lamont, M. R. E.

Lauks, I.

G. Chern, I. Lauks, and K. Norian, “Spin-coated amorphous chalcogenide films: photoinduced effects,” Thin Solid Films 123, 289–296 (1985).
[CrossRef]

G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979–6982 (1982).
[CrossRef]

Lim, S. C.

Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
[CrossRef]

Liu, H.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Lopez, C.

Lu, J.-P.

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21, 648–650 (2009).
[CrossRef]

Luther-Davies, B.

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[CrossRef] [PubMed]

S. J. Madden, T. Han, D. A. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides fabricated by thermal nanoimprint lithography,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OMH3.

Ma, K. J.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C.-L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids (to be published).

MacFarlane, D.

D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Madden, S.

Madden, S. J.

S. J. Madden, T. Han, D. A. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides fabricated by thermal nanoimprint lithography,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OMH3.

Madsen, C. K.

Miyashita, T.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Moss, D. J.

Mujagic, E.

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Narayan, V.

D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Nguyen, H. C.

Niesenhaus, B.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[CrossRef]

Norian, K.

G. Chern, I. Lauks, and K. Norian, “Spin-coated amorphous chalcogenide films: photoinduced effects,” Thin Solid Films 123, 289–296 (1985).
[CrossRef]

Oliveira, P.

S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[CrossRef]

Ottevaere, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Paiella, R.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Pantano, C.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

Richardson, K.

Richardson, M.

Rivero, C.

Ryan, J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

Schulte, A.

Shim, H. S.

Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
[CrossRef]

Sivco, D.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Sivco, D. L.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

Song, R.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

Song, S.

Stefanov, A.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Ta’eed, V.

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Tanaka, K.

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
[CrossRef]

H. Hisakuni and K. Tanaka, “Optical fabrication of microlenses in chalcogenide glasses,” Opt. Lett. 20, 958–960(1995).
[CrossRef] [PubMed]

Tang, X.

Z. Yin and X. Tang, “A review of energy bandgap engineering in iii–v semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51, 6–15 (2007).
[CrossRef]

Tatum, J.

D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Thienpont, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Tittel, F.

A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

Toor, F.

Tredicucci, A.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Tsay, C.

Vallée, R.

Völkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Wallner, O.

Wegmuller, M.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

Yang, Y. S.

Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
[CrossRef]

Yin, Z.

Z. Yin and X. Tang, “A review of energy bandgap engineering in iii–v semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51, 6–15 (2007).
[CrossRef]

You, I.-K.

Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
[CrossRef]

Youn, D.-H.

Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
[CrossRef]

Yu, C.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

Yu, L.

H. Zhao, L. Yu, and Y. Huang, “Investigation of a chemically treated inp(1Â 0Â 0) surface during hydrophilic wafer bonding process,” Mater. Sci. Eng. B 128, 93–97 (2006).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

Zbinden, H.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Zha, Y.

Zhao, H.

H. Zhao, L. Yu, and Y. Huang, “Investigation of a chemically treated inp(1Â 0Â 0) surface during hydrophilic wafer bonding process,” Mater. Sci. Eng. B 128, 93–97 (2006).
[CrossRef]

Zoubir, A.

Appl. Phys. Lett. (1)

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21, 648–650 (2009).
[CrossRef]

D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

J. Appl. Phys. (1)

G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979–6982 (1982).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[CrossRef]

Mater. Sci. Eng. B (1)

H. Zhao, L. Yu, and Y. Huang, “Investigation of a chemically treated inp(1Â 0Â 0) surface during hydrophilic wafer bonding process,” Mater. Sci. Eng. B 128, 93–97 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lasers Eng. (1)

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005).
[CrossRef]

Opt. Lett. (3)

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

Science (1)

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995).
[CrossRef]

Solid-State Electron. (1)

Z. Yin and X. Tang, “A review of energy bandgap engineering in iii–v semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51, 6–15 (2007).
[CrossRef]

Thin Solid Films (1)

G. Chern, I. Lauks, and K. Norian, “Spin-coated amorphous chalcogenide films: photoinduced effects,” Thin Solid Films 123, 289–296 (1985).
[CrossRef]

Other (3)

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).

S. J. Madden, T. Han, D. A. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides fabricated by thermal nanoimprint lithography,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OMH3.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C.-L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) 3D laser microscope scan of a large microlens ( 330 μm in diameter). Note that the vertical and the horizontal scales are different. (b) Height profile of a large microlens (upper graph) corresponding to (a). Dashed curve shows fit to circle of 2.07 mm in diameter. Lower graph shows the height profile of a small microlens ( 16 μm in diameter) measured by profilometry and fit to a circle of 21 μm in diameter (dashed curve). The dotted curves show the height deviation of the circular fit functions.

Fig. 2
Fig. 2

(a) Contact angle of arsenic sulfide solution on nontreated ( 6.6 ° ) and (b) on hydrofluoric acid treated ( 21.7 ° ) indium phosphide substrate surface.

Fig. 3
Fig. 3

CCD camera measurements of the relative height for lenses made from two different arsenic sulfide solutions depending on the baking duration. Error bars indicate the measurement uncertainty. Curves serve as guide to the eye only.

Fig. 4
Fig. 4

F-number and refractive index of large lenses ( 1.5 5 mm diameter) versus baking duration. F-number is the focal length divided by the lens diameter; refractive index is measured at 532 nm and averaged. Error bars indicate standard deviation. Curves serve as guide to the eye only.

Tables (1)

Tables Icon

Table 1 Fabrication Parameters and Resulting Lens Geometry (lens diameter and height measured by profilometry) of Microlenses on Indium Phosphide Substrates after 8 h Baking

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 R = 2 h r 2 + h 2 ,
f = R n 1 ,
f = r 2 + h 2 2 h ( n 1 ) or n = 1 + r 2 + h 2 2 h f .
f ( t ) = r 2 + [ β ( t ) h 0 ] 2 2 β ( t ) h 0 [ n ( t ) 1 ] ,

Metrics