Abstract

The surface damage threshold of undoped bulk 110 GaP induced by a high repetition rate femtosecond pulse at 1040nm with a duration of 61fs was studied. The threshold value was obtained by a linear fit of the incident single pulse fluence and was confirmed with a breakdown test around the threshold level. The result will be useful in high intensity, high repetition rate laser applications and ultrafast processes.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
    [CrossRef]
  2. I. Fuss and D. Smart, “Cryogenic gallium phosphide acousto-optic deflectors,” Appl. Opt. 30, 4526–4527 (1991).
    [CrossRef] [PubMed]
  3. T. E. Zipperian and L. R. Dawson, “A gallium phosphide high-temperature bipolar junction transistor,” Appl. Phys. Lett. 39, 895–897 (1981).
    [CrossRef]
  4. D. L. Keune, M. G. Craford, A. H. Herzog, and B. J. Fitzpatrick, “Gallium phosphide high-temperature electroluminescent p-n-p-n switches and controlled rectifiers,” J. Appl. Phys. 43, 3417–3421 (1972).
    [CrossRef]
  5. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
    [CrossRef]
  6. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
    [CrossRef]
  7. G. Chang, C. J. Divin, C. H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909–7913 (2006).
    [CrossRef] [PubMed]
  8. F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
    [CrossRef]
  9. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
    [CrossRef]
  10. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).
    [CrossRef]
  11. Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
    [CrossRef]
  12. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994).
    [CrossRef]
  13. C.-H. Fan and J. P. Longtin, “Modeling optical breakdown in dielectrics during ultrafast laser processing,” Appl. Opt. 40, 3124–3131 (2001).
    [CrossRef]
  14. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
    [CrossRef]
  15. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
    [CrossRef]
  16. A. Okano, R. K. Thoma, G. P. Williams, and R. T. Williams, “Two-photon photoelectron spectroscopy of GaP (110) after sputtering, annealing, and multishot laser damage,” Phys. Rev. B 52, 14789–14795 (1995).
    [CrossRef]
  17. S. Rychnovsky, G. R. Allan, C. H. Venzke, and T. F. Boggess, “Picosecond measurements of absorptive and refractive optical nonlinearities in GaP at 532 nm,” Opt. Lett. 19, 527–529 (1994).
    [CrossRef] [PubMed]
  18. K. Kuroda, Y. Okazaki, T. Shimura, H. Okamura, M. Chihara, M. Itoh, and I. Ogura, “Photorefractive effect in GaP,” Opt. Lett. 15, 1197–1199 (1990).
    [CrossRef] [PubMed]
  19. L. P. Gonzalez, S. Guha, and S. Trivedi, “Damage thresholds and nonlinear optical performance of GaP,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Tech. Dig. (CD) (Optical Society of America, 2004), paper CWA47.
    [PubMed]
  20. W.-Q. He, C.-M. Gu, and W.-Z. Shen, “Direct evidence of Kerr-like nonlinearity by femtosecond Z-scan technique,” Opt. Express 14, 5476–5483 (2006).
    [CrossRef] [PubMed]
  21. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [CrossRef] [PubMed]
  22. O. Madelung, Semiconductors: Data Handbook (Springer, 2004).
    [CrossRef]
  23. F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
    [CrossRef]
  24. B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
    [CrossRef]
  25. B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias,” J. Phys. D 42, 065102 (2009).
    [CrossRef]
  26. J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000).
    [CrossRef]
  27. A. Borowiec and H. K. Haugen, “Femtosecond laser micromachining of grooves in indium phosphide,” Appl. Phys. A 79, 521–529 (2004).
    [CrossRef]
  28. H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and Calcium Fluoride (CaF2),” J. Mech. Sci. Technol. 21, 1077–1082 (2007).
    [CrossRef]
  29. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225(2008).
    [CrossRef]

2010 (2)

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

2009 (3)

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias,” J. Phys. D 42, 065102 (2009).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

2008 (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225(2008).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

2007 (1)

H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and Calcium Fluoride (CaF2),” J. Mech. Sci. Technol. 21, 1077–1082 (2007).
[CrossRef]

2006 (2)

2005 (2)

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[CrossRef] [PubMed]

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

2004 (1)

A. Borowiec and H. K. Haugen, “Femtosecond laser micromachining of grooves in indium phosphide,” Appl. Phys. A 79, 521–529 (2004).
[CrossRef]

2001 (1)

2000 (2)

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000).
[CrossRef]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).
[CrossRef]

1999 (1)

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

1998 (1)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

1995 (1)

A. Okano, R. K. Thoma, G. P. Williams, and R. T. Williams, “Two-photon photoelectron spectroscopy of GaP (110) after sputtering, annealing, and multishot laser damage,” Phys. Rev. B 52, 14789–14795 (1995).
[CrossRef]

1994 (3)

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994).
[CrossRef]

S. Rychnovsky, G. R. Allan, C. H. Venzke, and T. F. Boggess, “Picosecond measurements of absorptive and refractive optical nonlinearities in GaP at 532 nm,” Opt. Lett. 19, 527–529 (1994).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

1981 (1)

T. E. Zipperian and L. R. Dawson, “A gallium phosphide high-temperature bipolar junction transistor,” Appl. Phys. Lett. 39, 895–897 (1981).
[CrossRef]

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

1972 (1)

D. L. Keune, M. G. Craford, A. H. Herzog, and B. J. Fitzpatrick, “Gallium phosphide high-temperature electroluminescent p-n-p-n switches and controlled rectifiers,” J. Appl. Phys. 43, 3417–3421 (1972).
[CrossRef]

Allan, G. R.

Arai, A.

Backus, S.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Baudach, S.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

Boggess, T. F.

Boming, Y.

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Bonse, J.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Femtosecond laser micromachining of grooves in indium phosphide,” Appl. Phys. A 79, 521–529 (2004).
[CrossRef]

Bovatsek, J.

Chai, L.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Chang, G.

Cheng, Z.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

Chihara, M.

Craford, M. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

D. L. Keune, M. G. Craford, A. H. Herzog, and B. J. Fitzpatrick, “Gallium phosphide high-temperature electroluminescent p-n-p-n switches and controlled rectifiers,” J. Appl. Phys. 43, 3417–3421 (1972).
[CrossRef]

Dan, L.

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Dawson, L. R.

T. E. Zipperian and L. R. Dawson, “A gallium phosphide high-temperature bipolar junction transistor,” Appl. Phys. Lett. 39, 895–897 (1981).
[CrossRef]

DeFevere, D. C.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Deng, Y.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

Divin, C. J.

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994).
[CrossRef]

Duanming, Z.

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Eaton, S. M.

Fan, C.-H.

Fang, X. H.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Faraon, A.

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

Fitzpatrick, B. J.

D. L. Keune, M. G. Craford, A. H. Herzog, and B. J. Fitzpatrick, “Gallium phosphide high-temperature electroluminescent p-n-p-n switches and controlled rectifiers,” J. Appl. Phys. 43, 3417–3421 (1972).
[CrossRef]

Fletcher, R. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Fuss, I.

Galvanauskas, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225(2008).
[CrossRef]

Gonzalez, L. P.

L. P. Gonzalez, S. Guha, and S. Trivedi, “Damage thresholds and nonlinear optical performance of GaP,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Tech. Dig. (CD) (Optical Society of America, 2004), paper CWA47.
[PubMed]

Gu, C.-M.

Guha, S.

L. P. Gonzalez, S. Guha, and S. Trivedi, “Damage thresholds and nonlinear optical performance of GaP,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Tech. Dig. (CD) (Optical Society of America, 2004), paper CWA47.
[PubMed]

Hatami, F.

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Femtosecond laser micromachining of grooves in indium phosphide,” Appl. Phys. A 79, 521–529 (2004).
[CrossRef]

He, W.-Q.

Herman, P. R.

Herzog, A. H.

D. L. Keune, M. G. Craford, A. H. Herzog, and B. J. Fitzpatrick, “Gallium phosphide high-temperature electroluminescent p-n-p-n switches and controlled rectifiers,” J. Appl. Phys. 43, 3417–3421 (1972).
[CrossRef]

Hu, M.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

Hu, M. L.

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Itoh, M.

Kaiser, A.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).
[CrossRef]

Kapteyn, H.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Kautek, W.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

Keune, D. L.

D. L. Keune, M. G. Craford, A. H. Herzog, and B. J. Fitzpatrick, “Gallium phosphide high-temperature electroluminescent p-n-p-n switches and controlled rectifiers,” J. Appl. Phys. 43, 3417–3421 (1972).
[CrossRef]

Kish, F. A.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994).
[CrossRef]

Krausz, F.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

Kruger, J.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

Kuo, C. P.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Kuroda, K.

Lee, H.

H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and Calcium Fluoride (CaF2),” J. Mech. Sci. Technol. 21, 1077–1082 (2007).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

Li, G.

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Li, L.

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Li, Y.

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

Lin, Z.

Liu, B. W.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Liu, C. H.

Liu, F.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994).
[CrossRef]

Longtin, J. P.

Madelung, O.

O. Madelung, Semiconductors: Data Handbook (Springer, 2004).
[CrossRef]

Masselink, W. T.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225(2008).
[CrossRef]

Mourou, G.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994).
[CrossRef]

Murnane, M.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Norris, T. B.

Ogura, I.

Okamura, H.

Okano, A.

A. Okano, R. K. Thoma, G. P. Williams, and R. T. Williams, “Two-photon photoelectron spectroscopy of GaP (110) after sputtering, annealing, and multishot laser damage,” Phys. Rev. B 52, 14789–14795 (1995).
[CrossRef]

Okazaki, Y.

Osentowski, T. D.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Panchatsharam, S.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias,” J. Phys. D 42, 065102 (2009).
[CrossRef]

Park, K. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Peanasky, M. J.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Rethfeld, B.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).
[CrossRef]

Rivoire, K.

Robbins, V. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Rudolph, P.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000).
[CrossRef]

Rychnovsky, S.

Sartania, S.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

Shah, L.

Shen, W.-Z.

Shimura, T.

Simon, G.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).
[CrossRef]

Sipu, H.

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Smart, D.

Song, Y. J.

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Spielmann, C.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994).
[CrossRef]

Steigerwald, D. A.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Steranka, F. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Sun, Q.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

Tan, B.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias,” J. Phys. D 42, 065102 (2009).
[CrossRef]

Thoma, R. K.

A. Okano, R. K. Thoma, G. P. Williams, and R. T. Williams, “Two-photon photoelectron spectroscopy of GaP (110) after sputtering, annealing, and multishot laser damage,” Phys. Rev. B 52, 14789–14795 (1995).
[CrossRef]

Tien, A. C.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Trivedi, S.

L. P. Gonzalez, S. Guha, and S. Trivedi, “Damage thresholds and nonlinear optical performance of GaP,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Tech. Dig. (CD) (Optical Society of America, 2004), paper CWA47.
[PubMed]

Vanderwater, D. A.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Venkatakrishnan, K.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias,” J. Phys. D 42, 065102 (2009).
[CrossRef]

Venzke, C. H.

Vicanek, M.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).
[CrossRef]

Vuckovic, J.

Wang, C.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

Wang, C. L.

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

Wang, C. Y.

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Williams, G. P.

A. Okano, R. K. Thoma, G. P. Williams, and R. T. Williams, “Two-photon photoelectron spectroscopy of GaP (110) after sputtering, annealing, and multishot laser damage,” Phys. Rev. B 52, 14789–14795 (1995).
[CrossRef]

Williams, R. T.

A. Okano, R. K. Thoma, G. P. Williams, and R. T. Williams, “Two-photon photoelectron spectroscopy of GaP (110) after sputtering, annealing, and multishot laser damage,” Phys. Rev. B 52, 14789–14795 (1995).
[CrossRef]

Williamson, S. L.

Wu, Y. Z.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Xing, Q.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

Xing, Q. R.

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

Xinyu, T.

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Yoshino, F.

Yu, J. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Zhang, H.

Zhang, W. L.

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

Zheltikov, A. M.

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Zhihua, L.

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Zipperian, T. E.

T. E. Zipperian and L. R. Dawson, “A gallium phosphide high-temperature bipolar junction transistor,” Appl. Phys. Lett. 39, 895–897 (1981).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

A. Borowiec and H. K. Haugen, “Femtosecond laser micromachining of grooves in indium phosphide,” Appl. Phys. A 79, 521–529 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

T. E. Zipperian and L. R. Dawson, “A gallium phosphide high-temperature bipolar junction transistor,” Appl. Phys. Lett. 39, 895–897 (1981).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994).
[CrossRef]

Appl. Surf. Sci. (1)

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010).
[CrossRef]

J. Appl. Phys. (1)

D. L. Keune, M. G. Craford, A. H. Herzog, and B. J. Fitzpatrick, “Gallium phosphide high-temperature electroluminescent p-n-p-n switches and controlled rectifiers,” J. Appl. Phys. 43, 3417–3421 (1972).
[CrossRef]

J. Mech. Sci. Technol. (1)

H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and Calcium Fluoride (CaF2),” J. Mech. Sci. Technol. 21, 1077–1082 (2007).
[CrossRef]

J. Opt. (1)

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
[CrossRef]

J. Phys. D (1)

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias,” J. Phys. D 42, 065102 (2009).
[CrossRef]

Laser Phys. Lett. (1)

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Nat. Photon. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225(2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

A. Okano, R. K. Thoma, G. P. Williams, and R. T. Williams, “Two-photon photoelectron spectroscopy of GaP (110) after sputtering, annealing, and multishot laser damage,” Phys. Rev. B 52, 14789–14795 (1995).
[CrossRef]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998).
[CrossRef]

Physica B (Amsterdam) (1)

Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005).
[CrossRef]

Other (2)

L. P. Gonzalez, S. Guha, and S. Trivedi, “Damage thresholds and nonlinear optical performance of GaP,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Tech. Dig. (CD) (Optical Society of America, 2004), paper CWA47.
[PubMed]

O. Madelung, Semiconductors: Data Handbook (Springer, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup. BS: beam splitter with a split ratio of 1 9 , PBS: polarization beam splitter. (b) Autocorrelation trace of the pump pulse.

Fig. 2
Fig. 2

Ablation spots with a descending pump energy sequence (from right to left: 74.2, 58, 44, 29, 21.1, 15, 10, and 6.9 nJ ). (a) Optical microscope photo, (b) SEM photo.

Fig. 3
Fig. 3

(a) Scanning probe microscope photo of an ablation site, (b) SEM photo of an ablation area.

Fig. 4
Fig. 4

Linear fit to the single pulse fluence to determine the damage threshold.

Tables (1)

Tables Icon

Table 1 Comparison of the Damage Threshold with the Previous Reports

Metrics