Abstract

We developed an adaptive polarimetric target detector (APTD) to determine the optimum combination strategy for a multichannel polarization-sensitive optical system. The proposed algorithm is based on scene-derived polarization properties of the target and background, and it seeks to find an optimum multichannel combination of linear polarizing filters that maximizes the signal-to-clutter ratio (SCR) in intensity and Stokes parameter images. The algorithm is validated by performing RX anomaly detection and a generalized likelihood ratio test on both synthetic and real imagery. The experimental results are analyzed through calculated SCR and receiver operating characteristic curves. Compared with several conventional operation methods, we find that better target detection performance is achieved with the APTD algorithm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059–1071 (1990).
    [CrossRef]
  2. L. Wolff and T. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
    [CrossRef]
  3. L. B. Wolff, “Polarization camera for computer vision with a beam splitter,” J. Opt. Soc. Am. A 11, 2935–2945 (1994).
    [CrossRef]
  4. L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot Autom. 13, 195–203 (1997).
    [CrossRef]
  5. J. S. Tyo, M. P. Rowe, J. E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996).
    [CrossRef] [PubMed]
  6. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004).
    [CrossRef] [PubMed]
  7. K. M. Yemelyanov, S. S. Lin, E. N. Pugh, and N. Engheta, “Adaptive algorithms for two-channel polarization sensing under various polarization statistics with nonuniform distributions,” Appl. Opt. 45, 5504–5520 (2006).
    [CrossRef] [PubMed]
  8. M. G. Gartley and W. Basener, “Topological anomaly detection performance with multispectral polarimetric imagery,” Proc. SPIE 7334, 73341O (2009).
    [CrossRef]
  9. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999).
    [CrossRef]
  10. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef] [PubMed]
  11. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651–1655 (1995).
    [CrossRef]
  12. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656–1658 (1995).
    [CrossRef]
  13. J. S. Tyo, “Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system,” J. Opt. Soc. Am. A 15, 359–366 (1998).
    [CrossRef]
  14. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41, 619–630 (2002).
    [CrossRef] [PubMed]
  15. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
    [CrossRef]
  16. D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
    [CrossRef]
  17. F. Goudail, “Optimization of the contrast in active Stokes images,” Opt. Lett. 34, 121–123 (2009).
    [CrossRef] [PubMed]
  18. M. Richert, X. Orlik, and A. D. Martino, “Adapted polarization state contrast image,” Opt. Express 17, 14199–14210(2009).
    [CrossRef] [PubMed]
  19. F. Goudail, “Comparison of maximal achievable contrast in scalar, Stokes, and Mueller images,” Opt. Lett. 35, 2600–2602(2010).
    [CrossRef] [PubMed]
  20. J. R. Schott, Fundamentals of Polarimetric Remote Sensing (SPIE, 2009).
    [CrossRef]
  21. G. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994).
    [CrossRef]
  22. A. P. Schaum, “Spectral subspace matched filtering,” Proc. SPIE 4381, 1–17 (2001).
    [CrossRef]
  23. J. R. Schott, Remote Sensing: The Image Chain Approach, 2nd ed. (Oxford University, 2007).
  24. I. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38, 1760–1770(1990).
    [CrossRef]
  25. J. R. Shell, “Polarimetric remote sensing in the visible to near infrared,” Ph.D. dissertation (Chester F. Carslon Center for Imaging Science, Rochester Institute of Technology, 2005).
  26. E. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp. Electron. Syst. AES-22, 115–127 (1986).
    [CrossRef]
  27. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. (Academic, 2009).

2010 (1)

2009 (3)

2006 (2)

2004 (1)

2002 (1)

2001 (1)

A. P. Schaum, “Spectral subspace matched filtering,” Proc. SPIE 4381, 1–17 (2001).
[CrossRef]

2000 (2)

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot Autom. 13, 195–203 (1997).
[CrossRef]

1996 (1)

1995 (2)

A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651–1655 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656–1658 (1995).
[CrossRef]

1994 (2)

G. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994).
[CrossRef]

L. B. Wolff, “Polarization camera for computer vision with a beam splitter,” J. Opt. Soc. Am. A 11, 2935–2945 (1994).
[CrossRef]

1991 (1)

L. Wolff and T. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
[CrossRef]

1990 (2)

I. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38, 1760–1770(1990).
[CrossRef]

L. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059–1071 (1990).
[CrossRef]

1986 (1)

E. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp. Electron. Syst. AES-22, 115–127 (1986).
[CrossRef]

Ambirajan, A.

A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651–1655 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656–1658 (1995).
[CrossRef]

Andreou, A.

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot Autom. 13, 195–203 (1997).
[CrossRef]

Basener, W.

M. G. Gartley and W. Basener, “Topological anomaly detection performance with multispectral polarimetric imagery,” Proc. SPIE 7334, 73341O (2009).
[CrossRef]

Bigué, L.

Boult, T.

L. Wolff and T. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
[CrossRef]

Chenault, D. B.

Dereniak, E. L.

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
[CrossRef]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

Descour, M. R.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
[CrossRef]

DeVlaminck, V.

Engheta, N.

Galland, F.

Garcia, J. P.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

Gartley, M. G.

M. G. Gartley and W. Basener, “Topological anomaly detection performance with multispectral polarimetric imagery,” Proc. SPIE 7334, 73341O (2009).
[CrossRef]

Goldstein, D. L.

Goudail, F.

Healey, G.

G. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994).
[CrossRef]

Jordan, D. L.

Kelly, E.

E. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp. Electron. Syst. AES-22, 115–127 (1986).
[CrossRef]

Kemme, S. A.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
[CrossRef]

Kondepudy, R.

G. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994).
[CrossRef]

Koutroumbas, K.

S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. (Academic, 2009).

Lewis, G. D.

Lin, S. S.

Locke, A. M.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

Look, D. C.

A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651–1655 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656–1658 (1995).
[CrossRef]

Mancini, T.

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot Autom. 13, 195–203 (1997).
[CrossRef]

Martino, A. D.

Orlik, X.

Phipps, G. S.

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
[CrossRef]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

Pouliquen, P.

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot Autom. 13, 195–203 (1997).
[CrossRef]

Pugh, E. N.

Pugh, J. E. N.

Reed, I.

I. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38, 1760–1770(1990).
[CrossRef]

Richert, M.

Roberts, P. J.

Rowe, M. P.

Sabatke, D. S.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
[CrossRef]

Schaum, A. P.

A. P. Schaum, “Spectral subspace matched filtering,” Proc. SPIE 4381, 1–17 (2001).
[CrossRef]

Schott, J. R.

J. R. Schott, Remote Sensing: The Image Chain Approach, 2nd ed. (Oxford University, 2007).

J. R. Schott, Fundamentals of Polarimetric Remote Sensing (SPIE, 2009).
[CrossRef]

Shaw, J. A.

Shell, J. R.

J. R. Shell, “Polarimetric remote sensing in the visible to near infrared,” Ph.D. dissertation (Chester F. Carslon Center for Imaging Science, Rochester Institute of Technology, 2005).

Sweatt, W. C.

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
[CrossRef]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

Takakura, Y.

Terrier, P.

Theodoridis, S.

S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. (Academic, 2009).

Tyo, J. S.

Wolff, L.

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot Autom. 13, 195–203 (1997).
[CrossRef]

L. Wolff and T. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
[CrossRef]

L. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059–1071 (1990).
[CrossRef]

Wolff, L. B.

Yemelyanov, K. M.

Yu, X.

I. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38, 1760–1770(1990).
[CrossRef]

Appl. Opt. (6)

IEEE Trans. Acoust. Speech Signal Process. (1)

I. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38, 1760–1770(1990).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

E. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp. Electron. Syst. AES-22, 115–127 (1986).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

L. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059–1071 (1990).
[CrossRef]

L. Wolff and T. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
[CrossRef]

G. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994).
[CrossRef]

IEEE Trans. Robot Autom. (1)

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot Autom. 13, 195–203 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Eng. (2)

A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651–1655 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656–1658 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (3)

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[CrossRef]

A. P. Schaum, “Spectral subspace matched filtering,” Proc. SPIE 4381, 1–17 (2001).
[CrossRef]

M. G. Gartley and W. Basener, “Topological anomaly detection performance with multispectral polarimetric imagery,” Proc. SPIE 7334, 73341O (2009).
[CrossRef]

Other (4)

J. R. Schott, Remote Sensing: The Image Chain Approach, 2nd ed. (Oxford University, 2007).

J. R. Schott, Fundamentals of Polarimetric Remote Sensing (SPIE, 2009).
[CrossRef]

S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. (Academic, 2009).

J. R. Shell, “Polarimetric remote sensing in the visible to near infrared,” Ph.D. dissertation (Chester F. Carslon Center for Imaging Science, Rochester Institute of Technology, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Distribution of the SCR for a three-channel system by setting one polarizer orientation at 0 ° and changing the other two θ 1 and θ 2 from 0 ° to 180 ° with a 5 ° step. The incident light from the target and background is at a different polarization state with the normalized Stokes vectors of (a)  S t = [ 1 , 0 , 0.3 ] T and S b = [ 1 , 0 , 0.2 ] T and (b)  S t = [ 1 , 0.3 , 0.1 ] T and S b = [ 1 , 0.1 , 0 ] T .

Fig. 2
Fig. 2

Flow chart of the proposed APTD algorithm.

Fig. 3
Fig. 3

Measured noise characteristics of the DoTP system (Quant. denotes quantization).

Fig. 4
Fig. 4

Synthetic Stokes parameter images for a three-channel DoTP system using Fessenkov’s method (with 1% linear contrast stretch). (a)  S 0 , (b)  S 1 , and (c)  S 2 .

Fig. 5
Fig. 5

ROC curve comparison of target detection performance on synthetic intensity images acquired with APTD-3, APTD-2, and three conventional operation methods with two target detectors: (a) RX and (b) GLRT. APTD-3 represents the optimum two-channel system using an overall integration time equivalent to a three-channel measurement. APTD-2 represents the optimum two-channel system with a normal integration time.

Fig. 6
Fig. 6

ROC curve comparison of target detection performance on synthetic Stokes parameter images acquired with APTD and three conventional operation methods with two target detectors: (a) RX and (b) GLRT.

Fig. 7
Fig. 7

Panchromatic image of testing scenario (with 1% linear contrast stretch). (a) Shiny black painted panel used as target. (b) Asphalt used as background. The pixels within the dashed outlines were used as labeled samples for model development and validation.

Fig. 8
Fig. 8

ROC curve comparison of target detection performance on outdoor Stokes images acquired with APTD and three conventional operation methods with two target detectors at two experimental geometries: (a) RX at Δ ϕ = 180 ° , (b) GLRT at Δ ϕ = 180 ° , (c) RX at Δ ϕ = 90 ° , and (d) GLRT at Δ ϕ = 90 ° .

Tables (1)

Tables Icon

Table 1 Comparison of SCRs with Different Operation Methods

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I i = 1 2 ( S 0 + cos 2 θ i · S 1 + sin 2 θ i · S 2 ) = m i T S i n ,
[ I 1 I N ] = [ m 1 T m N T ] [ S 0 S 1 S 2 ] i n = M S i n ,
S ^ i n = WI ,
σ n i = g e I ¯ i + σ c 2 ,
Σ I = M T Σ S v M + Σ I n ,
Σ S = W T Σ I W .
Σ ^ S v = W T ( Σ ^ I Σ ^ I n ) W .
SCR V 2 = ( μ t μ b ) T Σ V 1 ( μ t μ b ) ,
f ( θ 1 , , θ N ) = arg max θ 1 , , θ N { SCR V ( θ 1 , , θ N ) } ,
D RX ( z ) = z T Σ 1 z η H 1 < η H 0 ,
D GLRT ( z ) = ( s T Σ - 1 z ) 2 ( s T Σ - 1 s ) [ 1 + 1 K ( z T Σ - 1 z ) ] η H 1 < η H 0 ,

Metrics