Abstract

Frequency tunable microwave signal generation, based on a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, incorporating a phase-shifted fiber Bragg grating (PS-FBG) with two π-phase shifts, is demonstrated. In the proposed configuration, the PS-FBG with two ultranarrow transmission bands is embedded in a triangular cantilever to serve as a wavelength spacing tunable filter with a fixed center wavelength by applying various strains on the cantilever. A section of unpumped EDF is employed as a saturable absorber to ensure SLM operation in each of the two lasing lines. By beating the two wavelengths at a photodiode, a tunable microwave signal ranging from 8.835 to 24.360GHz is successfully achieved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
    [CrossRef]
  3. S. Baunel, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38, 334–335(2002).
    [CrossRef]
  4. X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
    [CrossRef]
  5. B. Lin, S. C. Tjin, H. Zhang, D. Tang, J. Hao, B. Dong, and S. Liang, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier,” Appl. Opt. 49, 6855–6860 (2010).
    [CrossRef] [PubMed]
  6. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
    [CrossRef]
  7. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
    [CrossRef]
  8. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “Tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17, 21773–21781 (2009).
    [CrossRef] [PubMed]
  9. S. Pan and J. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter,” Opt. Express 17, 12167–12173 (2009).
    [CrossRef] [PubMed]
  10. G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
    [CrossRef]
  11. L. Xia, P. Shum, Y. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18, 2162–2164(2006).
    [CrossRef]
  12. X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, “Largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11, 2970–2974(2003).
    [CrossRef] [PubMed]
  13. J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16, 1020–1022 (2004).
    [CrossRef]
  14. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser,” Opt. Express 16, 14173–14179 (2008).
    [CrossRef] [PubMed]

2010

B. Lin, S. C. Tjin, H. Zhang, D. Tang, J. Hao, B. Dong, and S. Liang, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier,” Appl. Opt. 49, 6855–6860 (2010).
[CrossRef] [PubMed]

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
[CrossRef]

2009

2008

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser,” Opt. Express 16, 14173–14179 (2008).
[CrossRef] [PubMed]

2007

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[CrossRef]

2006

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

L. Xia, P. Shum, Y. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18, 2162–2164(2006).
[CrossRef]

2004

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16, 1020–1022 (2004).
[CrossRef]

2003

2002

S. Baunel, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38, 334–335(2002).
[CrossRef]

Andres, M. V.

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
[CrossRef]

Baunel, S.

S. Baunel, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38, 334–335(2002).
[CrossRef]

Brox, O.

S. Baunel, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38, 334–335(2002).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[CrossRef]

Chan, C. C.

Chen, D.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Chen, X.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

Cheng, T. H.

L. Xia, P. Shum, Y. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18, 2162–2164(2006).
[CrossRef]

Cheng, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

Cruz, J. L.

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
[CrossRef]

Deng, Z.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

Dong, B.

Dong, X.

Dong, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

Fang, X.

Fu, H.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Hao, J.

He, S.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

He, X.

Kang, J. U.

Kreissl, J.

S. Baunel, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38, 334–335(2002).
[CrossRef]

Liang, S.

Liao, C.

Lin, B.

Liu, J.

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16, 1020–1022 (2004).
[CrossRef]

Liu, W.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Marti, J.

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
[CrossRef]

Ng, J. H.

Ngo, N. Q.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[CrossRef]

Palaci, J.

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
[CrossRef]

Pan, S.

Perez-Millan, P.

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
[CrossRef]

Sahin, G.

S. Baunel, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38, 334–335(2002).
[CrossRef]

Sartorius, B.

S. Baunel, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38, 334–335(2002).
[CrossRef]

Seeds, A. J.

Shum, P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

L. Xia, P. Shum, Y. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18, 2162–2164(2006).
[CrossRef]

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, “Largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11, 2970–2974(2003).
[CrossRef] [PubMed]

Sun, J.

Tang, D.

Tjin, S. C.

Villanueva, G. E.

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
[CrossRef]

Wang, D. N.

Wang, Y.

L. Xia, P. Shum, Y. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18, 2162–2164(2006).
[CrossRef]

Wei, Y.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Williams, K. J.

Xia, L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

L. Xia, P. Shum, Y. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18, 2162–2164(2006).
[CrossRef]

Yao, J.

S. Pan and J. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter,” Opt. Express 17, 12167–12173 (2009).
[CrossRef] [PubMed]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16, 1020–1022 (2004).
[CrossRef]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16, 1020–1022 (2004).
[CrossRef]

Yeap, T. H.

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16, 1020–1022 (2004).
[CrossRef]

Zhang, H.

Zhang, K.

Zhao, C.

Zhou, J. L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

Electron. Lett.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

S. Baunel, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38, 334–335(2002).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Xia, P. Shum, Y. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18, 2162–2164(2006).
[CrossRef]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16, 1020–1022 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

J. Lightwave Technol.

Nat. Photon.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[CrossRef]

Opt. Commun.

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, and P. Perez-Millan, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB lasers with wavelength spacing tunability,” Opt. Commun. 283, 5165–5168 (2010).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the dual-wavelength SLM fiber ring laser; inset is the mechanism structure of the triangular cantilever with a PS-FBG attached to it.

Fig. 2
Fig. 2

Measured output spectra of the dual- wavelength SLM laser every 6 min and fluctuation of the output power during 1 h .

Fig. 3
Fig. 3

Electrical spectrum of the microwave signal observed at the output of the photodetector within a span of 20 GHz ; inset shows the detail of the signal within a span of 10 MHz .

Fig. 4
Fig. 4

Captured electrical spectra of the tunable microwave signals of 8.835, 10.200, 13.600, and 24.360 GHz ; upper inset shows the corresponding optical spectra of the PS-FBG with different displacements on the cantilever beam (measured by OSA); lower inset shows the mechanism structure of a triangular cantilever with a tunable displacement applied on it.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 / [ 8 n ( Δ L + π / 2 κ ) ] ,
f c Δ λ / λ 2 .
Δ f = c λ g κ g ( Δ n 2 n eff ) 2 + ( 1 N g ) 2 ,

Metrics