Abstract

This paper presents an image quality enhancement of computational integral imaging reconstruction (CIIR) method by using a binary weighting mask on occlusion areas in elemental images. The proposed method utilizes a block-matching algorithm to estimate the occlusion areas in elemental images. Then, a binary weighting mask generated from the estimated occlusion area is applied to our CIIR method. This minimizes the overlapping effect of occluding objects in the reconstructed plane images and thus improves visual quality dramatically. To show the usefulness of our proposed scheme, we conduct several experiments and present the results. The experimental results indicate that our method is superior to the existing methods.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
    [CrossRef] [PubMed]
  2. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018(2005).
    [CrossRef]
  3. H. Yoo and D.-H. Shin, “Improved analysis on the signal property of computational integral imaging system,” Opt. Express 15, 14107–14114 (2007).
    [CrossRef] [PubMed]
  4. D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D object using a depth conversion technique,” J. Opt. Soc. Korea 12, 131–135 (2008).
    [CrossRef]
  5. D.-C. Hwang, K.-J. Lee, S.-C. Kim, and E.-S. Kim, “Extraction of location coordinates of 3-D objects from computationally reconstructed integral images basing on a blur metric,” Opt. Express 16, 3623–3635 (2008).
    [CrossRef] [PubMed]
  6. D.-H. Shin and H. Yoo, “Scale-variant magnification for computational integral imaging and its application to 3D object correlator,” Opt. Express 16, 8855–8867 (2008).
    [CrossRef] [PubMed]
  7. B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106–1108 (2006).
    [CrossRef] [PubMed]
  8. S.-H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
    [CrossRef] [PubMed]
  9. D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
    [CrossRef] [PubMed]
  10. D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589–4597 (2008).
    [CrossRef]
  11. J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification,” Appl. Opt. 43, 4882–4895 (2004).
    [CrossRef] [PubMed]
  12. C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135–143 (2002).
    [CrossRef]
  13. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
    [CrossRef] [PubMed]

2008 (6)

2007 (1)

2006 (2)

2005 (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018(2005).
[CrossRef]

2004 (2)

2002 (1)

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135–143 (2002).
[CrossRef]

Aggoun, A.

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135–143 (2002).
[CrossRef]

Baasantseren, G.

Choi, H.

Hong, S.-H.

Hwang, D.-C.

Jang, J.-S.

Javidi, B.

Jung, S.

Kang, J.-M.

Kim, E.-S.

Kim, N.

Kim, S.-C.

Kim, Y.

Kung, S. Y.

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135–143 (2002).
[CrossRef]

Lee, B.

Lee, B.-G.

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589–4597 (2008).
[CrossRef]

D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
[CrossRef] [PubMed]

Lee, J.-J.

D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
[CrossRef] [PubMed]

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589–4597 (2008).
[CrossRef]

Lee, K.-J.

McCormick, M.

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135–143 (2002).
[CrossRef]

Park, G.

Park, J.-H.

Ponce-Díaz, R.

Shin, D.-H.

Tan, C.-W.

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589–4597 (2008).
[CrossRef]

Wu, C.

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135–143 (2002).
[CrossRef]

Yoo, H.

Appl. Opt. (1)

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018(2005).
[CrossRef]

Opt. Commun. (1)

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589–4597 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (1)

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135–143 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the proposed scheme.

Fig. 2
Fig. 2

(a) Experimental setup for pickup process. (b) The recorded elemental images.

Fig. 3
Fig. 3

Conceptual diagram for estimation of occlusion area.

Fig. 4
Fig. 4

Principle of modified CIIR method.

Fig. 5
Fig. 5

(a) Occlusion. (b) Ten facial images.

Fig. 6
Fig. 6

For Face 1 and Face 2, (a) original images, (b) reconstructed plane image using the conventional CIIR method, (c) reconstructed plane image using the CIIR method with the previous occlusion removal technique, (d) reconstructed plane image using our modified CIIR method.

Fig. 7
Fig. 7

Graph of PSNR for ten test facial images.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S ( i , j ) = E ( t x s + q x m + r x , t y s + q y m + r y ) ,
SAD ( x , y ) ( u , v ) = i = 1 B j = 1 B | I L ( x + i , y + j ) I R ( x + u + i , y + v + j ) | ,
( u ^ , v ^ ) = argmin SAD ( x , y ) ( u , v ) .
I ( x ) = 1 N ( x ) i = 1 n w i ( x ) I ( x i ) = 1 N ( x ) i = 1 n w i ( x ) I ( g z x + P ( i 1 2 ) ) ,
w i ( x ) = { 1 , P ( i 1 ) x i < P i , x i S 0 , elsewhere
N ( x ) = i = 1 n w i ( x ) .
PSNR ( I o , I r ) = 10 log 10 ( 255 2 MSE ( I o , I r ) ) ,
MSE = 1 p q x = 0 p 1 y = 0 q 1 [ I o ( x , y ) I r ( x , y ) ] 2 ,

Metrics