Abstract

A fiber Bragg grating sensor system used for monitoring the effects of strain on the power cable of an offshore wind turbine is presented. The Bragg grating structure was inscribed into coated nonphotosensitive standard telecommunication fibers using an IR femtosecond laser and the point-by-point writing technique. Because of the presence of the protective coating of the fiber, the mechanical stability of the resultant sensor device is better than that of a sensor consisting of a bare fiber. A system containing this sensing element was to our knowledge for the first time successfully installed and tested in an offshore wind turbine prototype (REpower 6M, REpower Systems, AG, Germany) in February 2010, near Ellhöft (Germany). The fabrication process of the fiber Bragg gratings, measurement results of the online monitoring, and a comparison between the sensor signal and commonly used sensing techniques are presented.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
    [CrossRef]
  2. P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OTuB1.
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  4. R. Kashyap, Fiber Bragg Gratings (Academic, 2009).
  5. K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
    [CrossRef]
  6. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669(1993).
    [CrossRef]
  7. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
    [CrossRef]
  8. A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
    [CrossRef] [PubMed]
  9. G. D. Marshall, M. Ams, and M. J. Withford, “Point-by-point femtosecond laser inscription of fiber and waveguide Bragg gratings for photonic device fabrication,” in PICALO Conference Proceedings, pp. 360–362 (2006).
  10. International Telecommunication Union, Recommendation G.652, “Characteristics of a single-mode optical fiber and cable,” Table 2, 8 (2005).
  11. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178(2005).
    [CrossRef]
  12. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
    [CrossRef]
  13. C. C. Ciang, J. R. Lee, and H. J. Bang, “Structural health monitoring for a wind turbine system: a review of damage detection methods,” Meas. Sci. Technol. 19, 122001 (2008).
    [CrossRef]
  14. J. Burgmeier, W. Schippers, and W. Schade, “Fiber optic sensor system for stress monitoring in power cables,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA67.

2008 (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

C. C. Ciang, J. R. Lee, and H. J. Bang, “Structural health monitoring for a wind turbine system: a review of damage detection methods,” Meas. Sci. Technol. 19, 122001 (2008).
[CrossRef]

2006 (2)

A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
[CrossRef] [PubMed]

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

2005 (1)

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178(2005).
[CrossRef]

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

1993 (1)

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669(1993).
[CrossRef]

1990 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

Albert, J.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669(1993).
[CrossRef]

Ams, M.

G. D. Marshall, M. Ams, and M. J. Withford, “Point-by-point femtosecond laser inscription of fiber and waveguide Bragg gratings for photonic device fabrication,” in PICALO Conference Proceedings, pp. 360–362 (2006).

Apitz, J.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Bang, H. J.

C. C. Ciang, J. R. Lee, and H. J. Bang, “Structural health monitoring for a wind turbine system: a review of damage detection methods,” Meas. Sci. Technol. 19, 122001 (2008).
[CrossRef]

Bennion, I.

A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
[CrossRef] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178(2005).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Bilodeau, F.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669(1993).
[CrossRef]

Bugaud, M.

P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OTuB1.

Burgmeier, J.

J. Burgmeier, W. Schippers, and W. Schade, “Fiber optic sensor system for stress monitoring in power cables,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA67.

Ciang, C. C.

C. C. Ciang, J. R. Lee, and H. J. Bang, “Structural health monitoring for a wind turbine system: a review of damage detection methods,” Meas. Sci. Technol. 19, 122001 (2008).
[CrossRef]

Dewynter-Marty, V.

P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OTuB1.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Ecke, W.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Ferdinand, P.

P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OTuB1.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Hill, K. O.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669(1993).
[CrossRef]

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

Johnson, D. C.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669(1993).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 2009).

Khrushchev, I.

A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
[CrossRef] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Khrushchev, I. Y.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178(2005).
[CrossRef]

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

Lee, J. R.

C. C. Ciang, J. R. Lee, and H. J. Bang, “Structural health monitoring for a wind turbine system: a review of damage detection methods,” Meas. Sci. Technol. 19, 122001 (2008).
[CrossRef]

Lembke, E.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Lenschow, G.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Magne, S.

P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OTuB1.

Malo, B.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669(1993).
[CrossRef]

Marshall, G. D.

G. D. Marshall, M. Ams, and M. J. Withford, “Point-by-point femtosecond laser inscription of fiber and waveguide Bragg gratings for photonic device fabrication,” in PICALO Conference Proceedings, pp. 360–362 (2006).

Martinez, A.

A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
[CrossRef] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178(2005).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Martinez, C.

P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OTuB1.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Rougeault, S.

P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OTuB1.

Schade, W.

J. Burgmeier, W. Schippers, and W. Schade, “Fiber optic sensor system for stress monitoring in power cables,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA67.

Schippers, W.

J. Burgmeier, W. Schippers, and W. Schade, “Fiber optic sensor system for stress monitoring in power cables,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA67.

Schroeder, K.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

Withford, M. J.

G. D. Marshall, M. Ams, and M. J. Withford, “Point-by-point femtosecond laser inscription of fiber and waveguide Bragg gratings for photonic device fabrication,” in PICALO Conference Proceedings, pp. 360–362 (2006).

Electron. Lett. (3)

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669(1993).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178(2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

Meas. Sci. Technol. (2)

C. C. Ciang, J. R. Lee, and H. J. Bang, “Structural health monitoring for a wind turbine system: a review of damage detection methods,” Meas. Sci. Technol. 19, 122001 (2008).
[CrossRef]

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Nat. Photon. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Opt. Lett. (1)

Other (6)

J. Burgmeier, W. Schippers, and W. Schade, “Fiber optic sensor system for stress monitoring in power cables,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA67.

P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OTuB1.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

R. Kashyap, Fiber Bragg Gratings (Academic, 2009).

G. D. Marshall, M. Ams, and M. J. Withford, “Point-by-point femtosecond laser inscription of fiber and waveguide Bragg gratings for photonic device fabrication,” in PICALO Conference Proceedings, pp. 360–362 (2006).

International Telecommunication Union, Recommendation G.652, “Characteristics of a single-mode optical fiber and cable,” Table 2, 8 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for inscription of FBG.

Fig. 2
Fig. 2

Analysis setup.

Fig. 3
Fig. 3

Array of eight FBGs in one standard single-mode fiber.

Fig. 4
Fig. 4

Comparison of sensor signals produced by a strain gauge and an FBG. Both sensors had been fixed on a load test facility for power cables for 5000 cycles.

Fig. 5
Fig. 5

Temperature sensitivity of the FBG.

Fig. 6
Fig. 6

FBG attached on power cable at an angle α; (a) untwisted power cable with FBG, (b) twisted power cable with stretched FBG sensor.

Fig. 7
Fig. 7

Measurement results of the strain monitoring sensor system. Resonant reflection of the FBG (black signal) and rotation angle of nacelle (gray signal). The temperature variation during this measurement was less than 5 ° C .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ Bragg = 2 n eff Λ .

Metrics