Abstract

We present a polymeric-based Fabry–Perot optofluidic sensor fabricated by combining direct laser machining and hot embossing. This technique provides a more elegant solution to conventional hot embossing by increasing the production rate, improving the reproducibility, and further reducing the cost, providing a large working area and flexibility in design modification and customization. As a proof of concept, a Fabry–Perot (F–P) optofluidic sensor was fabricated in polymethyl methacrylate (PMMA) from a micromachined stamp. The experimental results of the sensor agree well with analytical calculations and show a sensitivity of 2.13×103RIU/nm for fluid refractive index change.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
    [CrossRef]
  2. R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006).
    [CrossRef]
  3. M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
    [CrossRef]
  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
    [CrossRef] [PubMed]
  5. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
    [CrossRef] [PubMed]
  6. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
    [CrossRef]
  7. E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
    [CrossRef]
  8. H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
    [CrossRef] [PubMed]
  9. J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
    [CrossRef] [PubMed]
  10. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277-279 (2001).
    [CrossRef]
  11. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007-2009 (2004).
    [CrossRef] [PubMed]
  12. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144-1146 (2003).
    [CrossRef] [PubMed]
  13. F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
    [CrossRef]
  14. J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
    [CrossRef]
  15. OPTIMtrade Glycerine (Dow Chemical Company, 2011), retrieved http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0032/0901b803800322b7.pdf?filepath=glycerine/pdfs/noreg/115-00667.pdf&fromPage=GetDoc.

2010 (2)

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
[CrossRef] [PubMed]

2008 (2)

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef] [PubMed]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

2007 (1)

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

2006 (1)

R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006).
[CrossRef]

2004 (2)

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007-2009 (2004).
[CrossRef] [PubMed]

2003 (4)

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144-1146 (2003).
[CrossRef] [PubMed]

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
[CrossRef]

Becker, H.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
[CrossRef]

Cheng, Y.

Chien, R.-D.

R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006).
[CrossRef]

Cooper, J.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef] [PubMed]

Day, D.

J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
[CrossRef] [PubMed]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef] [PubMed]

Enger, J.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef] [PubMed]

Eriksson, E.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Esch, M. B.

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Esener, S.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Flynn, R.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Genova, V.

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Goksor, M.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef] [PubMed]

Gu, M.

J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
[CrossRef] [PubMed]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Hagberg, P.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef] [PubMed]

Hanstorp, D.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef] [PubMed]

He, F.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

Heim, U.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
[CrossRef]

Irizarry, G.

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Juodkazis, S.

Kapur, S.

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Kawachi, M.

Leach, J.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef] [PubMed]

Leonardo, R.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef] [PubMed]

Marcinkevicius, A.

Masuda, M.

Matsuo, S.

Midorikawa, K.

Misawa, H.

Miwa, M.

Mushfique, H.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef] [PubMed]

Nishii, J.

Ozkan, C.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Ozkan, M.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Padgett, M.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef] [PubMed]

Qiao, L.-L.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

Ramser, K.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef] [PubMed]

Scrimgeour, J.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Shihoyama, K.

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef] [PubMed]

Sugioka, K.

Toyoda, K.

Wang, C.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

Wang, M.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Watanabe, M.

Wu, J.

J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
[CrossRef] [PubMed]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Xu, Z.-Z.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

Yin, H.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef] [PubMed]

Anal. Chem. (1)

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Biomed. Microdevices (1)

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Lab Chip (2)

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef] [PubMed]

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Sens. Actuators A, Phys. (2)

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
[CrossRef]

R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006).
[CrossRef]

Other (1)

OPTIMtrade Glycerine (Dow Chemical Company, 2011), retrieved http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0032/0901b803800322b7.pdf?filepath=glycerine/pdfs/noreg/115-00667.pdf&fromPage=GetDoc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the experimental system. The insets show the details of the optofluidic sensor that was made up of an F–P cavity (demonstrated in the enlarged top inset) integrated within a PMMA microfluidic channel.

Fig. 2
Fig. 2

Fabrication procedure for the F–P optofluidic sensor. (a) Spin coating of a PDMS layer onto a silicon wafer, (b)  CO 2 laser cutting of the device template and removal of the unwanted PDMS, (c) embossing of the PDMS template into a PMMA substrate creating the master stamp, (d) gold coating of the sensing region using a shadow mask, and (e) alignment and bonding of the optofluidic sensor.

Fig. 3
Fig. 3

(a) Schematic illustration of the principle of an F–P cavity. The output spectrum of the transmission signal shows a series of peaks with respect to different wavelengths. (b) The transmission spectra of the samples with different gold coating thickness (20, 30, 30, and 40 nm ) using objective lenses of (b)  NA = 0.14 and (c)  NA = 0.5 .

Fig. 4
Fig. 4

Finesse (a) and visibility (b) calculated from the spectra collected with different NA objective lenses of the sensors with 20 and 40 nm gold coating.

Fig. 5
Fig. 5

(a) Experimental and theoretical calculation of the device with the 20 nm gold coating. (b) Measured transmission spectra of the 40 nm gold coated device using fluids of two different refractive indices ( n = 1.33303 and 1.34729).

Fig. 6
Fig. 6

Measured F–P resonant peak positions for two samples (with 20 and 40 nm gold coatings) using glycerine-water solutions of different refractive indices.

Tables (1)

Tables Icon

Table 1 Refractive Index of Glycerine-Water Solutions ( 20 ° C )

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n d = m λ 2 , ( m = 1 , 2 , 3 , ) ,
F = λ 2 2 n d δ λ ,
V = I max I min I max + I min ,

Metrics