Abstract

We present a polymeric-based Fabry-Perot optofluidic sensor fabricated by combining direct laser machining and hot embossing. This technique provides a more elegant solution to conventional hot embossing by increasing the production rate, improving the reproducibility, and further reducing the cost, providing a large working area and flexibility in design modification and customization. As a proof of concept, a Fabry-Perot (F-P) optofluidic sensor was fabricated in polymethyl methacrylate (PMMA) from a micromachined stamp. The experimental results of the sensor agree well with analytical calculations and show a sensitivity of 2.13×10−3 RIU/nm for fluid refractive index change.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
    [CrossRef]
  2. R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006).
    [CrossRef]
  3. M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
    [CrossRef]
  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
    [CrossRef]
  5. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
    [CrossRef]
  6. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
    [CrossRef]
  7. E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
    [CrossRef]
  8. H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
    [CrossRef]
  9. J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
    [CrossRef]
  10. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277-279 (2001).
    [CrossRef]
  11. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007-2009 (2004).
    [CrossRef]
  12. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144-1146 (2003).
    [CrossRef]
  13. F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
    [CrossRef]
  14. J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
    [CrossRef]
  15. OPTIMtrade Glycerine (Dow Chemical Company, 2011), retrieved http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0032/0901b803800322b7.pdf?filepath=glycerine/pdfs/noreg/115-00667.pdf&fromPage=GetDoc.

2010

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
[CrossRef]

2008

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

2007

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

2006

R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006).
[CrossRef]

2004

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007-2009 (2004).
[CrossRef]

2003

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144-1146 (2003).
[CrossRef]

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef]

2001

2000

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
[CrossRef]

Becker, H.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
[CrossRef]

Cheng, Y.

Chien, R.-D.

R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006).
[CrossRef]

Cooper, J.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef]

Day, D.

J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
[CrossRef]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef]

Enger, J.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef]

Eriksson, E.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Esch, M. B.

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Esener, S.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Flynn, R.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Genova, V.

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Goksor, M.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef]

Gu, M.

J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
[CrossRef]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Hagberg, P.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef]

Hanstorp, D.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef]

He, F.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

Heim, U.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
[CrossRef]

Irizarry, G.

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Juodkazis, S.

Kapur, S.

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Kawachi, M.

Leach, J.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef]

Leonardo, R.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef]

Marcinkevicius, A.

Masuda, M.

Matsuo, S.

Midorikawa, K.

Misawa, H.

Miwa, M.

Mushfique, H.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef]

Nishii, J.

Ozkan, C.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Ozkan, M.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Padgett, M.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef]

Qiao, L.-L.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

Ramser, K.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef]

Scrimgeour, J.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Shihoyama, K.

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef]

Sugioka, K.

Toyoda, K.

Wang, C.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

Wang, M.

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Watanabe, M.

Wu, J.

J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010).
[CrossRef]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Xu, Z.-Z.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

Yin, H.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef]

Anal. Chem.

H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008).
[CrossRef]

Appl. Phys. Lett.

F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010).
[CrossRef]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Biomed. Microdevices

M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003).
[CrossRef]

Lab Chip

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004).
[CrossRef]

M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003).
[CrossRef]

Nature

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Sens. Actuators A, Phys.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000).
[CrossRef]

R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006).
[CrossRef]

Other

OPTIMtrade Glycerine (Dow Chemical Company, 2011), retrieved http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0032/0901b803800322b7.pdf?filepath=glycerine/pdfs/noreg/115-00667.pdf&fromPage=GetDoc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics