Abstract

Spectral domain phase microscopy (SDPM) has been reported in the literature as a functional extension to low-coherence interferometry, which enables nanoscale measurement of a scatter’s displacement. The signal in SDPM is generated from structural images that lack molecular specificity. This paper investigates the expansion of phase analysis to fluorescence self-interference signals to provide functional information about a sample. Spectral domain fluorescence coherence phase microscopy is demonstrated for nanoscale resolution motion detection of fluorescent particles with a signal-to-noise ratio limited resolution of ~10nm. This paper demonstrates the feasibility of combining phase processing with fluorescence self-interference, which may be useful for future applications such as cell rheology.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
    [CrossRef] [PubMed]
  2. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–2133 (2005).
    [CrossRef] [PubMed]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  4. E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells,” J. Biomed. Opt. 12, 044008 (2007).
    [CrossRef] [PubMed]
  5. K. H. Drexhage, “IV interaction of light with monomolecular dye layers,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1974), pp. 163–232.
    [CrossRef]
  6. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics (Wiley, 1978), pp. 1–65.
    [CrossRef]
  7. K. E. Drabe, G. Cnossen, and D. A. Wiersma, “Localization of spontaneous emission in front of a mirror,” Opt. Commun. 73, 91–95 (1989).
    [CrossRef]
  8. D. Braun and P. Fromherz, “Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon,” Appl. Phys. A 65, 341–348 (1997).
    [CrossRef]
  9. A. Lambacher and P. Fromherz, “Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes,” J. Opt. Soc. Am. B 19, 1435–1453 (2002).
    [CrossRef]
  10. A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
    [CrossRef]
  11. A. Bilenca, A. Ozcan, B. Bouma, and G. Tearney, “Fluorescence coherence tomography,” Opt. Express 14, 7134–7143 (2006).
    [CrossRef] [PubMed]
  12. I. Märki, N. L. Bocchio, S. Geissbuehler, F. Aguet, A. Bilenca, and T. Lasser, “Three-dimensional nano-localization of single fluorescent emitters,” Opt. Express 18, 20263–20272(2010).
    [CrossRef] [PubMed]
  13. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464 (2006).
    [CrossRef] [PubMed]
  14. A. K. Ellerbee and J. A. Izatt, “Phase retrieval in low-coherence interferometric microscopy,” Opt. Lett. 32, 388–390 (2007).
    [CrossRef] [PubMed]

2010 (1)

2007 (2)

A. K. Ellerbee and J. A. Izatt, “Phase retrieval in low-coherence interferometric microscopy,” Opt. Lett. 32, 388–390 (2007).
[CrossRef] [PubMed]

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells,” J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

2002 (1)

1997 (1)

D. Braun and P. Fromherz, “Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon,” Appl. Phys. A 65, 341–348 (1997).
[CrossRef]

1989 (1)

K. E. Drabe, G. Cnossen, and D. A. Wiersma, “Localization of spontaneous emission in front of a mirror,” Opt. Commun. 73, 91–95 (1989).
[CrossRef]

Aguet, F.

Akkin, T.

Applegate, B. E.

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells,” J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

Bilenca, A.

Bocchio, N. L.

Bouma, B.

Braun, D.

D. Braun and P. Fromherz, “Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon,” Appl. Phys. A 65, 341–348 (1997).
[CrossRef]

Cantor, C. R.

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Cense, B.

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics (Wiley, 1978), pp. 1–65.
[CrossRef]

Choma, M. A.

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells,” J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
[CrossRef] [PubMed]

Cnossen, G.

K. E. Drabe, G. Cnossen, and D. A. Wiersma, “Localization of spontaneous emission in front of a mirror,” Opt. Commun. 73, 91–95 (1989).
[CrossRef]

Creazzo, T. L.

Davis, B.

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

de Boer, J. F.

Drabe, K. E.

K. E. Drabe, G. Cnossen, and D. A. Wiersma, “Localization of spontaneous emission in front of a mirror,” Opt. Commun. 73, 91–95 (1989).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, “IV interaction of light with monomolecular dye layers,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1974), pp. 163–232.
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Ellerbee, A. K.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Fromherz, P.

A. Lambacher and P. Fromherz, “Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes,” J. Opt. Soc. Am. B 19, 1435–1453 (2002).
[CrossRef]

D. Braun and P. Fromherz, “Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon,” Appl. Phys. A 65, 341–348 (1997).
[CrossRef]

Geissbuehler, S.

Goldberg, B. B.

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Ippolito, S. B.

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Izatt, J. A.

Joo, C.

Karl, W. C.

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Lambacher, A.

Lasser, T.

I. Märki, N. L. Bocchio, S. Geissbuehler, F. Aguet, A. Bilenca, and T. Lasser, “Three-dimensional nano-localization of single fluorescent emitters,” Opt. Express 18, 20263–20272(2010).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Märki, I.

McDowell, E. J.

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells,” J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

Moiseev, L. A.

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Ozcan, A.

Park, B. H.

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics (Wiley, 1978), pp. 1–65.
[CrossRef]

Sarunic, M. V.

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics (Wiley, 1978), pp. 1–65.
[CrossRef]

Swan, A. K.

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Tearney, G.

Unlu, M. S.

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Weinberg, S.

Wiersma, D. A.

K. E. Drabe, G. Cnossen, and D. A. Wiersma, “Localization of spontaneous emission in front of a mirror,” Opt. Commun. 73, 91–95 (1989).
[CrossRef]

Yang, C.

Appl. Phys. A (1)

D. Braun and P. Fromherz, “Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon,” Appl. Phys. A 65, 341–348 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

J. Biomed. Opt. (1)

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells,” J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

K. E. Drabe, G. Cnossen, and D. A. Wiersma, “Localization of spontaneous emission in front of a mirror,” Opt. Commun. 73, 91–95 (1989).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Other (2)

K. H. Drexhage, “IV interaction of light with monomolecular dye layers,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1974), pp. 163–232.
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics (Wiley, 1978), pp. 1–65.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of SDFCPM system topology combining a common-path interferometer (left) and a spectrometer (right).

Fig. 2
Fig. 2

Illustration of the configuration used for moving samples.

Fig. 3
Fig. 3

(a) Normalized profiles of interferometric fringes for three different spacer thicknesses. (b) Fourier transform of the profiles shown in Fig. 3, with data points indicating the range used for determining Δ z . The peaks have been normalized.

Fig. 4
Fig. 4

Phase as a function of the frame number and z. The value of the phase fluctuates for most of the dataset except for autocorrelation and DC artifacts near z = 0 and within the coherence length of the reflector located at a path length mismatch of z = 97 μm (indicated with arrows). The figure on the right is a graph of the phase data as a function of time extracted from the horizontal line corresponding to the position of the fluorophores at z = 97 μm .

Fig. 5
Fig. 5

Fits to phase data of the form y = a sin ( 2 π b x + c ) + d x + e , with fit parameters listed in Table 1. Dashed lines highlight the peak-to-peak height of the signal.

Tables (2)

Tables Icon

Table 1 Fit Parameters to the Form y = a sin ( 2 π b x + c ) + d x + e for Data Shown in Fig. 5

Tables Icon

Table 2 Peak-to-Peak Displacements of Sinusoidal Motion Based on Values Listed in Table 1 Along with Expected Limits Discussed in the Previous Section Signal-to-Noise Ratio Estimation of Minimum δ z

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) = S ( k ) · ( E R 2 + E S 2 + 2 E R E S cos ( 2 n k ( Δ z + δ z ) ) ) ,
φ = ± 2 k 0 δ z + φ 0 ,
δ z ( t ) = λ 0 4 n π ( φ ( t ) φ ( t o ) ) ,

Metrics