Abstract

A tunable device based on chirped microstrip delay lines is proposed to precompensate at the transmitter; the chromatic dispersion accumulated during optical fiber propagation. Compensated dispersion is finely tuned by changing the effective dielectric constant of the microstrip line by means of moving dielectric perturbers. Compensation up to 51ps/GHz necessary to propagate over 400km uncompensated standard single-mode fiber at 10Gb/s is demonstrated. The proposed solution does not require coherent detection and can find application in metropolitan and regional area networks, where the physical path traced by each channel can change owing to the traffic routing, requiring the dynamic compensation of different amounts of accumulated dispersion.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett. 9, 259–261 (1997).
    [CrossRef]
  2. H. Bulow, “Electronic equalization of transmission impairments,” in Proceedings of the Optical Fiber Communication Conference ,, (Optical Society of America, 2002), pp. 24–25.
    [CrossRef]
  3. B. L. Kasper, “Equalization of multimode optical fiber systems,” Bell. Syst. Tech. J. 61, 1367–1388 (1982).
  4. O. E. Agazzi, D. E. Crivelli, and H. S. Carrer, “Maximum likelihood sequence estimation in the presence of chromatic disperison and polarization mode dispersion in intensity modulation/direct detection optical channels,” in IEEE International Conference on Communications (IEEE, 2004), pp. 2787–2793.
  5. J. D. Downie, M. Sauer, and J. Hurley, “Experimental measurements of uncompensated reach increase from MLSE-EDC with regard to measurement BER and modulation format,” Opt. Express 14, 11520–11527 (2006).
    [CrossRef] [PubMed]
  6. A. H. Gnauck, J. Sinsky, P. J. Winzer, and S. Chandrasekhar, “Linear microwave domain dispersion compensation of 10 Gb/s signals using heterodyne detection,” in Proceedings of the Optical Fiber Communication Conference, (2005).
  7. D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” Proceedings of the Optical Fiber Communication Conference, (2005), paper PDP27.
  8. L. Ranzani, P. Boffi, R. Siano, and M. Martinelli, “Transmitter-side microwave domain dispersion compensation using direct detection for 10 Gb/s signals,” IEEE Photon. Technol. Lett. 19, 1849–1851 (2007).
    [CrossRef]
  9. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
    [CrossRef]
  10. L. Ranzani, P. Boffi, R. Siano, S. Rondineau, Z. Popovic, and M. Martinelli, “Microwave-domain analog predistortion based on chirped delay lines for dispersion compensation of 10 Gb/s optical communication signals,” J. Lightwave Technol. 26, 2641–2646 (2008).
    [CrossRef]
  11. T.-Y. Yun and K. Chang, “Analysis and optimization of a phase shifter controlled by a piezoelectric transducer,” IEEE Trans. Microwave Theory Tech. 50, 105–111 (2002).
    [CrossRef]
  12. M. Kirschning and R. H. Jansen, “Accurate model for effective dielectric constant of microstrip with validity up to millimeter wave frequencies,” Electron. Lett. 18, 272–273 (1982).
    [CrossRef]

2008

2007

L. Ranzani, P. Boffi, R. Siano, and M. Martinelli, “Transmitter-side microwave domain dispersion compensation using direct detection for 10 Gb/s signals,” IEEE Photon. Technol. Lett. 19, 1849–1851 (2007).
[CrossRef]

2006

2002

T.-Y. Yun and K. Chang, “Analysis and optimization of a phase shifter controlled by a piezoelectric transducer,” IEEE Trans. Microwave Theory Tech. 50, 105–111 (2002).
[CrossRef]

2001

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

1997

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett. 9, 259–261 (1997).
[CrossRef]

1982

B. L. Kasper, “Equalization of multimode optical fiber systems,” Bell. Syst. Tech. J. 61, 1367–1388 (1982).

M. Kirschning and R. H. Jansen, “Accurate model for effective dielectric constant of microstrip with validity up to millimeter wave frequencies,” Electron. Lett. 18, 272–273 (1982).
[CrossRef]

Agazzi, O. E.

O. E. Agazzi, D. E. Crivelli, and H. S. Carrer, “Maximum likelihood sequence estimation in the presence of chromatic disperison and polarization mode dispersion in intensity modulation/direct detection optical channels,” in IEEE International Conference on Communications (IEEE, 2004), pp. 2787–2793.

Benito, D.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

Boffi, P.

L. Ranzani, P. Boffi, R. Siano, S. Rondineau, Z. Popovic, and M. Martinelli, “Microwave-domain analog predistortion based on chirped delay lines for dispersion compensation of 10 Gb/s optical communication signals,” J. Lightwave Technol. 26, 2641–2646 (2008).
[CrossRef]

L. Ranzani, P. Boffi, R. Siano, and M. Martinelli, “Transmitter-side microwave domain dispersion compensation using direct detection for 10 Gb/s signals,” IEEE Photon. Technol. Lett. 19, 1849–1851 (2007).
[CrossRef]

Bulow, H.

H. Bulow, “Electronic equalization of transmission impairments,” in Proceedings of the Optical Fiber Communication Conference ,, (Optical Society of America, 2002), pp. 24–25.
[CrossRef]

Carrer, H. S.

O. E. Agazzi, D. E. Crivelli, and H. S. Carrer, “Maximum likelihood sequence estimation in the presence of chromatic disperison and polarization mode dispersion in intensity modulation/direct detection optical channels,” in IEEE International Conference on Communications (IEEE, 2004), pp. 2787–2793.

Chandrasekhar, S.

A. H. Gnauck, J. Sinsky, P. J. Winzer, and S. Chandrasekhar, “Linear microwave domain dispersion compensation of 10 Gb/s signals using heterodyne detection,” in Proceedings of the Optical Fiber Communication Conference, (2005).

Chang, K.

T.-Y. Yun and K. Chang, “Analysis and optimization of a phase shifter controlled by a piezoelectric transducer,” IEEE Trans. Microwave Theory Tech. 50, 105–111 (2002).
[CrossRef]

Chbat, M.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett. 9, 259–261 (1997).
[CrossRef]

Crivelli, D. E.

O. E. Agazzi, D. E. Crivelli, and H. S. Carrer, “Maximum likelihood sequence estimation in the presence of chromatic disperison and polarization mode dispersion in intensity modulation/direct detection optical channels,” in IEEE International Conference on Communications (IEEE, 2004), pp. 2787–2793.

Downie, J. D.

Erro, M. J.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

Garde, M. J.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, J. Sinsky, P. J. Winzer, and S. Chandrasekhar, “Linear microwave domain dispersion compensation of 10 Gb/s signals using heterodyne detection,” in Proceedings of the Optical Fiber Communication Conference, (2005).

Guglielmi, M.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

Hurley, J.

Jansen, R. H.

M. Kirschning and R. H. Jansen, “Accurate model for effective dielectric constant of microstrip with validity up to millimeter wave frequencies,” Electron. Lett. 18, 272–273 (1982).
[CrossRef]

Kasper, B. L.

B. L. Kasper, “Equalization of multimode optical fiber systems,” Bell. Syst. Tech. J. 61, 1367–1388 (1982).

Kirschning, M.

M. Kirschning and R. H. Jansen, “Accurate model for effective dielectric constant of microstrip with validity up to millimeter wave frequencies,” Electron. Lett. 18, 272–273 (1982).
[CrossRef]

Laperle, C.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” Proceedings of the Optical Fiber Communication Conference, (2005), paper PDP27.

Laso, M. A. G.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

Li, C.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” Proceedings of the Optical Fiber Communication Conference, (2005), paper PDP27.

Lopetegi, T.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

Mak, G.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” Proceedings of the Optical Fiber Communication Conference, (2005), paper PDP27.

Martinelli, M.

L. Ranzani, P. Boffi, R. Siano, S. Rondineau, Z. Popovic, and M. Martinelli, “Microwave-domain analog predistortion based on chirped delay lines for dispersion compensation of 10 Gb/s optical communication signals,” J. Lightwave Technol. 26, 2641–2646 (2008).
[CrossRef]

L. Ranzani, P. Boffi, R. Siano, and M. Martinelli, “Transmitter-side microwave domain dispersion compensation using direct detection for 10 Gb/s signals,” IEEE Photon. Technol. Lett. 19, 1849–1851 (2007).
[CrossRef]

McGhan, D.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” Proceedings of the Optical Fiber Communication Conference, (2005), paper PDP27.

Muriel, M. A.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

O’Sullivan, M.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” Proceedings of the Optical Fiber Communication Conference, (2005), paper PDP27.

Penninckx, D.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett. 9, 259–261 (1997).
[CrossRef]

Pierre, L.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett. 9, 259–261 (1997).
[CrossRef]

Popovic, Z.

Ranzani, L.

L. Ranzani, P. Boffi, R. Siano, S. Rondineau, Z. Popovic, and M. Martinelli, “Microwave-domain analog predistortion based on chirped delay lines for dispersion compensation of 10 Gb/s optical communication signals,” J. Lightwave Technol. 26, 2641–2646 (2008).
[CrossRef]

L. Ranzani, P. Boffi, R. Siano, and M. Martinelli, “Transmitter-side microwave domain dispersion compensation using direct detection for 10 Gb/s signals,” IEEE Photon. Technol. Lett. 19, 1849–1851 (2007).
[CrossRef]

Rondineau, S.

Sauer, M.

Savchenko, A.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” Proceedings of the Optical Fiber Communication Conference, (2005), paper PDP27.

Siano, R.

L. Ranzani, P. Boffi, R. Siano, S. Rondineau, Z. Popovic, and M. Martinelli, “Microwave-domain analog predistortion based on chirped delay lines for dispersion compensation of 10 Gb/s optical communication signals,” J. Lightwave Technol. 26, 2641–2646 (2008).
[CrossRef]

L. Ranzani, P. Boffi, R. Siano, and M. Martinelli, “Transmitter-side microwave domain dispersion compensation using direct detection for 10 Gb/s signals,” IEEE Photon. Technol. Lett. 19, 1849–1851 (2007).
[CrossRef]

Sinsky, J.

A. H. Gnauck, J. Sinsky, P. J. Winzer, and S. Chandrasekhar, “Linear microwave domain dispersion compensation of 10 Gb/s signals using heterodyne detection,” in Proceedings of the Optical Fiber Communication Conference, (2005).

Sorolla, M.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

Thiery, J.-P.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett. 9, 259–261 (1997).
[CrossRef]

Winzer, P. J.

A. H. Gnauck, J. Sinsky, P. J. Winzer, and S. Chandrasekhar, “Linear microwave domain dispersion compensation of 10 Gb/s signals using heterodyne detection,” in Proceedings of the Optical Fiber Communication Conference, (2005).

Yun, T.-Y.

T.-Y. Yun and K. Chang, “Analysis and optimization of a phase shifter controlled by a piezoelectric transducer,” IEEE Trans. Microwave Theory Tech. 50, 105–111 (2002).
[CrossRef]

Bell. Syst. Tech. J.

B. L. Kasper, “Equalization of multimode optical fiber systems,” Bell. Syst. Tech. J. 61, 1367–1388 (1982).

Electron. Lett.

M. Kirschning and R. H. Jansen, “Accurate model for effective dielectric constant of microstrip with validity up to millimeter wave frequencies,” Electron. Lett. 18, 272–273 (1982).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip technology,” IEEE Microw. Wirel. Compon. Lett. 11, 486–488 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett. 9, 259–261 (1997).
[CrossRef]

L. Ranzani, P. Boffi, R. Siano, and M. Martinelli, “Transmitter-side microwave domain dispersion compensation using direct detection for 10 Gb/s signals,” IEEE Photon. Technol. Lett. 19, 1849–1851 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

T.-Y. Yun and K. Chang, “Analysis and optimization of a phase shifter controlled by a piezoelectric transducer,” IEEE Trans. Microwave Theory Tech. 50, 105–111 (2002).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

H. Bulow, “Electronic equalization of transmission impairments,” in Proceedings of the Optical Fiber Communication Conference ,, (Optical Society of America, 2002), pp. 24–25.
[CrossRef]

O. E. Agazzi, D. E. Crivelli, and H. S. Carrer, “Maximum likelihood sequence estimation in the presence of chromatic disperison and polarization mode dispersion in intensity modulation/direct detection optical channels,” in IEEE International Conference on Communications (IEEE, 2004), pp. 2787–2793.

A. H. Gnauck, J. Sinsky, P. J. Winzer, and S. Chandrasekhar, “Linear microwave domain dispersion compensation of 10 Gb/s signals using heterodyne detection,” in Proceedings of the Optical Fiber Communication Conference, (2005).

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” Proceedings of the Optical Fiber Communication Conference, (2005), paper PDP27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Proposed tunable dispersion compensation scheme. (b) Layer view.

Fig. 2
Fig. 2

Chirped microstrip line realized in the laboratory.

Fig. 3
Fig. 3

(a) Experimental measurement of the scattering parameters of the microstrip line (b) Experimental measurement of the group delay of the microstrip line.

Fig. 4
Fig. 4

ε eff step curve approximation (symbols) and theoretical curves (curves) for different dispersion values.

Fig. 5
Fig. 5

Dielectric perturber distance from the microstrip line H 2 for the different desired dispersion values.

Fig. 6
Fig. 6

Experimental realization of dispersion tunable microstrip CDL.

Fig. 7
Fig. 7

Scattering parameters of the realized device for the lowest ( 16 ps / GHz , dashed curve) and the highest ( 56 ps / GHz ) dispersion values.

Fig. 8
Fig. 8

Experimental group delay curves for the different desired dispersion values.

Fig. 9
Fig. 9

Optical transmitter for analog predistortion.

Fig. 10
Fig. 10

Simulated eye diagrams of a back-to-back 10 Gbytes / s NRZ signal (a) without and (b) with predistortion. The eye diagram of a predistorted NRZ signal after 275 km propagation is shown in (c).

Tables (1)

Tables Icon

Table 1 Performance of the Tunable Dispersion Compensator in Fig. 6 for Different Propagation Distances [Optima(R) Simulations]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Z 0 ( z ) = 50 exp ( A · W ( z ) · sin ( ς ( z ) d z ) ) = 50 exp ( A · W ( z ) · sin ( 2 π a 0 z + C z 2 + C L 2 / 4 ) ) ,
Δ φ = L p · Δ β ,
Δ β = 2 π λ 0 ( ε eff ( f ) ε eff ( f ) ) ,
d τ d z = 2 ε ( z ) c ,
ω ( z ) = c 2 ε ( z ) ( 2 π a 0 + 2 C z ) .
d τ d z = d τ d ω d ω d z = β 2 d ω d z ,
2 ε ( z ) c = β 2 c ε C β 2 c 4 d ε d z ( 2 π a 0 + 2 C z ) ,
ε ( z ) = β 2 c 2 C ε ( z 0 ) ( 2 π + 2 a 0 C z 2 π + 2 a 0 C z 0 ) 2 2 ε ( z 0 ) β 2 c 2 C 2 ε ( z 0 ) ( 2 π + 2 a 0 C z 2 π + 2 a 0 C z 0 ) 2 ,

Metrics