Abstract

We employ picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy (CARS) in a one-dimensional (1D) imaging configuration. Temperature and O2:N2 concentration ratios are measured along a 1D line of up to 12mm in length. The images consist of up to 330 individual rotational CARS (RCARS) spectra, corresponding to 330 spatially resolved volume elements in the probe volume. Signal levels are sufficient for the collection of single-laser-pulse images at temperatures of up to approximately 1200K and shot-averaged images at flame temperatures, demonstrated at 2100K. The precision of picosecond pure-rotational 1D imaging CARS is assessed by acquiring a series of 100 single-laser-pulse images in a heated flow of N2 from 410K1200K and evaluating a single volume element for temperature in each image. Accuracy is demonstrated by comparing temperatures from the evaluated averaged spectra to thermocouple readings in the heated flow. Deviations from the thermocouple of <30K in the evaluated temperature were found at up to 1205K. Accuracy and single-shot precision are compared to those reported for single-point nanosecond dual-broadband pure-RCARS and nanosecond 1D vibrational CARS.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).
  2. M. Aldén, P.-E. Bengtsson, and H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
    [CrossRef] [PubMed]
  3. A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
    [CrossRef] [PubMed]
  4. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
    [CrossRef] [PubMed]
  5. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” Proc. Combust. Inst. 32, 847–854 (2009).
    [CrossRef]
  6. M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646–3651 (2006).
    [CrossRef] [PubMed]
  7. J. Shirley, R. Hall, J. Verdieck, and A. Eckbreth, “New directions in CARS diagnostics for combustion,” in Proceedings of the Fifteenth American Institute of Aeronautics and Astronautics Thermophysics Conference (1979), paper 80–1542, pp. 1–13.
  8. J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, and R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
    [CrossRef] [PubMed]
  9. R. P. Lucht, “Three-laser coherent anti-Stokes Raman-scattering measurements of two species,” Opt. Lett. 12, 78–80(1987).
    [CrossRef] [PubMed]
  10. S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
    [CrossRef]
  11. A. C. Eckbreth, “BOXCARS—crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978).
    [CrossRef]
  12. S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008).
    [CrossRef] [PubMed]
  13. D. V. Murphy, M. B. Long, R. K. Chang, and A. C. Eckbreth, “Spatially resolved coherent anti-stokes Raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169(1979).
    [CrossRef] [PubMed]
  14. H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and LiquidsA.Weber, ed. (Springer-Verlag, 1979), pp. 123–166.
    [CrossRef]
  15. J. B. Snow, J. Zheng, and R. K. Chang, “Spatially and spectrally resolved multipoint coherent anti-Stokes Raman scattering from N2 and O2 flows,” Opt. Lett. 8, 599–601(1983).
    [CrossRef] [PubMed]
  16. J. Stufflebeam and A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Nonintrusive Combustion Diagnostics, K.Kuo and T.Parr, eds. (Begell House, 1994), pp. 115–131.
  17. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “One-dimensional vibrational coherent anti-Stokes Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534(1996).
    [CrossRef] [PubMed]
  18. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements,” Appl. Opt. 36, 3253–3259 (1997).
    [CrossRef] [PubMed]
  19. J. Bood, C. Brackmann, P.-E. Bengtsson, and M. Aldén, “Multipoint temperature and oxygen-concentration measurements using rotational coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 25, 1535–1537 (2000).
    [CrossRef]
  20. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224(2005).
    [CrossRef] [PubMed]
  21. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
    [CrossRef]
  22. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
    [CrossRef] [PubMed]
  23. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
    [CrossRef] [PubMed]
  24. T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010).
    [CrossRef] [PubMed]
  25. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
    [CrossRef]
  26. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
    [CrossRef]
  27. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
    [CrossRef]
  28. T. Seeger, F. Beyrau, A. Bräuer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
    [CrossRef]
  29. E. Magens, “Nutzung von Rotations-CARS zur Temperatur-und Konzentrations-messung in Flammen,” Ph.D. thesis (Universität Erlangen-Nürnberg, 1992).
  30. M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Chem. Phys. 91, 41–46 (1987).
    [CrossRef]
  31. L. A. Rahn and R. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
    [CrossRef]
  32. R. Kee, F. Rupley, E. Meeks, and J. Miller, “CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Tech. Rep. SAND96-8216 (Sandia National Laboratories, 1996).
  33. “Chemical–kinetic mechanisms for combustion applications,” , Center for Energy Research (Combustion Division), University of California at San Diego, http://maeweb.ucsd.edu/combustion/.
  34. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432(2010).
    [CrossRef] [PubMed]

2011 (1)

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

2010 (4)

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432(2010).
[CrossRef] [PubMed]

2009 (3)

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef] [PubMed]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” Proc. Combust. Inst. 32, 847–854 (2009).
[CrossRef]

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

2005 (2)

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224(2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

2003 (1)

T. Seeger, F. Beyrau, A. Bräuer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

2000 (1)

1997 (1)

1996 (2)

1987 (2)

R. P. Lucht, “Three-laser coherent anti-Stokes Raman-scattering measurements of two species,” Opt. Lett. 12, 78–80(1987).
[CrossRef] [PubMed]

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Chem. Phys. 91, 41–46 (1987).
[CrossRef]

1986 (3)

1984 (1)

1983 (1)

1979 (1)

1978 (1)

A. C. Eckbreth, “BOXCARS—crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978).
[CrossRef]

Afzelius, M.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” Proc. Combust. Inst. 32, 847–854 (2009).
[CrossRef]

Aldén, M.

Anderson, T. J.

Bengtsson, P.-E.

Beyrau, F.

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646–3651 (2006).
[CrossRef] [PubMed]

T. Seeger, F. Beyrau, A. Bräuer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

Bood, J.

Brackmann, C.

Bräuer, A.

T. Seeger, F. Beyrau, A. Bräuer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

Chang, R. K.

Coltrin, M. E.

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Chem. Phys. 91, 41–46 (1987).
[CrossRef]

Eckbreth, A.

J. Shirley, R. Hall, J. Verdieck, and A. Eckbreth, “New directions in CARS diagnostics for combustion,” in Proceedings of the Fifteenth American Institute of Aeronautics and Astronautics Thermophysics Conference (1979), paper 80–1542, pp. 1–13.

A. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).

Eckbreth, A. C.

A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

D. V. Murphy, M. B. Long, R. K. Chang, and A. C. Eckbreth, “Spatially resolved coherent anti-stokes Raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169(1979).
[CrossRef] [PubMed]

A. C. Eckbreth, “BOXCARS—crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978).
[CrossRef]

J. Stufflebeam and A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Nonintrusive Combustion Diagnostics, K.Kuo and T.Parr, eds. (Begell House, 1994), pp. 115–131.

Edner, H.

Farrow, R. L.

Frederickson, K.

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

Gao, Y.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010).
[CrossRef] [PubMed]

Gord, J. R.

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432(2010).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224(2005).
[CrossRef] [PubMed]

Grasser, T. W.

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

Hall, R.

J. Shirley, R. Hall, J. Verdieck, and A. Eckbreth, “New directions in CARS diagnostics for combustion,” in Proceedings of the Fifteenth American Institute of Aeronautics and Astronautics Thermophysics Conference (1979), paper 80–1542, pp. 1–13.

Hsu, P. S.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

Jonuscheit, J.

Kearney, S. P.

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

Kee, R.

R. Kee, F. Rupley, E. Meeks, and J. Miller, “CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Tech. Rep. SAND96-8216 (Sandia National Laboratories, 1996).

Kiefer, J.

Kliewer, C. J.

Klöckner, H. W.

H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and LiquidsA.Weber, ed. (Springer-Verlag, 1979), pp. 123–166.
[CrossRef]

Koszykowski, M. L.

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Chem. Phys. 91, 41–46 (1987).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

Leipertz, A.

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef] [PubMed]

S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008).
[CrossRef] [PubMed]

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646–3651 (2006).
[CrossRef] [PubMed]

T. Seeger, F. Beyrau, A. Bräuer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements,” Appl. Opt. 36, 3253–3259 (1997).
[CrossRef] [PubMed]

T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “One-dimensional vibrational coherent anti-Stokes Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534(1996).
[CrossRef] [PubMed]

J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, and R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
[CrossRef] [PubMed]

Long, M. B.

Lucht, R. P.

Magens, E.

E. Magens, “Nutzung von Rotations-CARS zur Temperatur-und Konzentrations-messung in Flammen,” Ph.D. thesis (Universität Erlangen-Nürnberg, 1992).

Meeks, E.

R. Kee, F. Rupley, E. Meeks, and J. Miller, “CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Tech. Rep. SAND96-8216 (Sandia National Laboratories, 1996).

Meyer, T. R.

Miller, J.

R. Kee, F. Rupley, E. Meeks, and J. Miller, “CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Tech. Rep. SAND96-8216 (Sandia National Laboratories, 1996).

Miller, J. D.

Murphy, D. V.

Palmer, R.

Palmer, R. E.

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Chem. Phys. 91, 41–46 (1987).
[CrossRef]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

Patterson, B. D.

Rahn, L. A.

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Chem. Phys. 91, 41–46 (1987).
[CrossRef]

L. A. Rahn and R. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
[CrossRef]

Roy, S.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224(2005).
[CrossRef] [PubMed]

Rupley, F.

R. Kee, F. Rupley, E. Meeks, and J. Miller, “CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Tech. Rep. SAND96-8216 (Sandia National Laboratories, 1996).

Schenk, M.

Schrötter, H. W.

H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and LiquidsA.Weber, ed. (Springer-Verlag, 1979), pp. 123–166.
[CrossRef]

Seeger, T.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010).
[CrossRef] [PubMed]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef] [PubMed]

S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008).
[CrossRef] [PubMed]

T. Seeger, F. Beyrau, A. Bräuer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements,” Appl. Opt. 36, 3253–3259 (1997).
[CrossRef] [PubMed]

T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “One-dimensional vibrational coherent anti-Stokes Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534(1996).
[CrossRef] [PubMed]

Settersten, T. B.

Shirley, J.

J. Shirley, R. Hall, J. Verdieck, and A. Eckbreth, “New directions in CARS diagnostics for combustion,” in Proceedings of the Fifteenth American Institute of Aeronautics and Astronautics Thermophysics Conference (1979), paper 80–1542, pp. 1–13.

Slipchenko, M. N.

Snow, J. B.

Stauffer, H. U.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432(2010).
[CrossRef] [PubMed]

Stufflebeam, J.

J. Stufflebeam and A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Nonintrusive Combustion Diagnostics, K.Kuo and T.Parr, eds. (Begell House, 1994), pp. 115–131.

Tedder, S. A.

Thumann, A.

Verdieck, J.

J. Shirley, R. Hall, J. Verdieck, and A. Eckbreth, “New directions in CARS diagnostics for combustion,” in Proceedings of the Fifteenth American Institute of Aeronautics and Astronautics Thermophysics Conference (1979), paper 80–1542, pp. 1–13.

Vestin, F.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” Proc. Combust. Inst. 32, 847–854 (2009).
[CrossRef]

Weikl, M. C.

Zheng, J.

Appl. Opt. (5)

Appl. Phys. Lett. (3)

A. C. Eckbreth, “BOXCARS—crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

Appl. Spectrosc. (1)

J. Chem. Phys. (1)

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Chem. Phys. 91, 41–46 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

T. Seeger, F. Beyrau, A. Bräuer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

Opt. Lett. (11)

D. V. Murphy, M. B. Long, R. K. Chang, and A. C. Eckbreth, “Spatially resolved coherent anti-stokes Raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169(1979).
[CrossRef] [PubMed]

J. B. Snow, J. Zheng, and R. K. Chang, “Spatially and spectrally resolved multipoint coherent anti-Stokes Raman scattering from N2 and O2 flows,” Opt. Lett. 8, 599–601(1983).
[CrossRef] [PubMed]

J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, and R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
[CrossRef] [PubMed]

A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

R. P. Lucht, “Three-laser coherent anti-Stokes Raman-scattering measurements of two species,” Opt. Lett. 12, 78–80(1987).
[CrossRef] [PubMed]

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “One-dimensional vibrational coherent anti-Stokes Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534(1996).
[CrossRef] [PubMed]

J. Bood, C. Brackmann, P.-E. Bengtsson, and M. Aldén, “Multipoint temperature and oxygen-concentration measurements using rotational coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 25, 1535–1537 (2000).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224(2005).
[CrossRef] [PubMed]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef] [PubMed]

T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432(2010).
[CrossRef] [PubMed]

Proc. Combust. Inst. (3)

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” Proc. Combust. Inst. 32, 847–854 (2009).
[CrossRef]

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

Prog. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

Other (7)

H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and LiquidsA.Weber, ed. (Springer-Verlag, 1979), pp. 123–166.
[CrossRef]

J. Stufflebeam and A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Nonintrusive Combustion Diagnostics, K.Kuo and T.Parr, eds. (Begell House, 1994), pp. 115–131.

A. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).

J. Shirley, R. Hall, J. Verdieck, and A. Eckbreth, “New directions in CARS diagnostics for combustion,” in Proceedings of the Fifteenth American Institute of Aeronautics and Astronautics Thermophysics Conference (1979), paper 80–1542, pp. 1–13.

E. Magens, “Nutzung von Rotations-CARS zur Temperatur-und Konzentrations-messung in Flammen,” Ph.D. thesis (Universität Erlangen-Nürnberg, 1992).

R. Kee, F. Rupley, E. Meeks, and J. Miller, “CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Tech. Rep. SAND96-8216 (Sandia National Laboratories, 1996).

“Chemical–kinetic mechanisms for combustion applications,” , Center for Energy Research (Combustion Division), University of California at San Diego, http://maeweb.ucsd.edu/combustion/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Phase-matching arrangement for the 1D RCARS imaging presented in this work. The figure demonstrates phase matching for a vertical 1D line; both vertical and horizontal line-imaging configurations are presented. The z axis is nominally in the laser propagation direction. The y axis is the focusing dimension of the cylindrical lens, and the x axis corresponds to the laser sheet height.

Fig. 2
Fig. 2

Rich laminar premixed propane flame used in this study ( Φ = 2.8 ). The green line segments crossing the flame front denote the 1D probe volumes studied.

Fig. 3
Fig. 3

Transverse temperature profile taken by thermocouple (symbols) in the N 2 heated flow used in the single-shot precision and accuracy measurements. The RCARS probed volume is indicated, and z = 0 corresponds to the center of the nozzle.

Fig. 4
Fig. 4

Raw RCARS 1D image taken in room air with 50 laser shots. (a) CCD image. (b) Single-column intensity distribution along a N 2 Raman line, demonstrating the effective length of the imaged region. (c) Single pixel row spectrum.

Fig. 5
Fig. 5

Evaluated temperature distributions for a single pixel row spectrum taken from 100 single shots in a heated flow of N 2 . Evaluations were performed at (a) 408, (b) 697, (c) 985, and (d)  1205 K . The thermocouple temperature, average RCARS-evaluated temperature, and standard deviation for single-shot measurements are shown.

Fig. 6
Fig. 6

CCD images taken in the laminar propane flame. The probe delay in these experiments was set to (a) 0 and (b)  100 ps .

Fig. 7
Fig. 7

Single pixel row from the image in Fig. 6b. The experimental data are in black, and the theoretical evaluation is in red, evaluated to be 1930 K at this location.

Fig. 8
Fig. 8

Temperature (black curve) and relative O 2 -to- N 2 ratio profiles (red dotted curve) evaluated from 1000 laser shots at an axial height of (a) 5 and (b)  15 mm in the premixed laminar propane flame. Images were taken with a 100 ps probe delay. Error bars ( ± 2 σ ) are shown, as calculated by analyzing repeated experiments.

Metrics