T. Tanifuji, “Alternative boundary conditions for solving optical diffusion equations by a finite difference time domain analysis in three-dimensional scattering medium,” Opt. Rev. 16, 283–289 (2009).

[CrossRef]

T. Tanifuji, “Extension of grid separation in the finite difference time domain analysis for predicting time-resolved reflectance of an optical pulse from scattering medium with non-scattering regions,” Opt. Rev. 16, 452–453 (2009).

[CrossRef]

M. Fabiani, D. D. Schmorrow, and G. Gratton, “Optical imaging of the intact human brain (guest editorial),” IEEE Eng. Med. Biol. Mag. 26 (4), 14–16 (2007).

[CrossRef]
[PubMed]

T. Tanifuji and K. Ichitsubo, “Finite difference time domain analysis of diffusion equations with nonuniform grids for time-resolved reflectance of an optical pulse in three-dimensional scattering medium,” Opt. Rev. 12, 480–485 (2005).

[CrossRef]

F. G. Gao, H. Z. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 779–791 (2002).

[CrossRef]

T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).

[CrossRef]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction schema for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271(1999).

[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delphy, “An investigation of light transport through scattering body with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delphy, “An investigation of light transport through scattering body with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delphy, “An investigation of light transport through scattering body with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

M. Fabiani, D. D. Schmorrow, and G. Gratton, “Optical imaging of the intact human brain (guest editorial),” IEEE Eng. Med. Biol. Mag. 26 (4), 14–16 (2007).

[CrossRef]
[PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delphy, “An investigation of light transport through scattering body with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[CrossRef]
[PubMed]

R. D. Frostig, In Vivo Optical Imaging of Brain Function (CRC, 2002), Chap. 8.

[CrossRef]

F. G. Gao, H. Z. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 779–791 (2002).

[CrossRef]

M. Fabiani, D. D. Schmorrow, and G. Gratton, “Optical imaging of the intact human brain (guest editorial),” IEEE Eng. Med. Biol. Mag. 26 (4), 14–16 (2007).

[CrossRef]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction schema for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271(1999).

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction schema for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271(1999).

[CrossRef]

T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

T. Tanifuji and K. Ichitsubo, “Finite difference time domain analysis of diffusion equations with nonuniform grids for time-resolved reflectance of an optical pulse in three-dimensional scattering medium,” Opt. Rev. 12, 480–485 (2005).

[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997), Chap. 9.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction schema for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271(1999).

[CrossRef]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical property,” Appl. Opt. 28, 2331–2336(1989).

[CrossRef]
[PubMed]

M. Fabiani, D. D. Schmorrow, and G. Gratton, “Optical imaging of the intact human brain (guest editorial),” IEEE Eng. Med. Biol. Mag. 26 (4), 14–16 (2007).

[CrossRef]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delphy, “An investigation of light transport through scattering body with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

T. Tanifuji, “Alternative boundary conditions for solving optical diffusion equations by a finite difference time domain analysis in three-dimensional scattering medium,” Opt. Rev. 16, 283–289 (2009).

[CrossRef]

T. Tanifuji, “Extension of grid separation in the finite difference time domain analysis for predicting time-resolved reflectance of an optical pulse from scattering medium with non-scattering regions,” Opt. Rev. 16, 452–453 (2009).

[CrossRef]

T. Tanifuji and K. Ichitsubo, “Finite difference time domain analysis of diffusion equations with nonuniform grids for time-resolved reflectance of an optical pulse in three-dimensional scattering medium,” Opt. Rev. 12, 480–485 (2005).

[CrossRef]

T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).

[CrossRef]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

F. G. Gao, H. Z. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 779–791 (2002).

[CrossRef]

F. G. Gao, H. Z. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 779–791 (2002).

[CrossRef]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).

[CrossRef]

F. G. Gao, H. Z. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 779–791 (2002).

[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical property,” Appl. Opt. 28, 2331–2336(1989).

[CrossRef]
[PubMed]

M. Fabiani, D. D. Schmorrow, and G. Gratton, “Optical imaging of the intact human brain (guest editorial),” IEEE Eng. Med. Biol. Mag. 26 (4), 14–16 (2007).

[CrossRef]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction schema for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271(1999).

[CrossRef]

T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

T. Tanifuji, “Alternative boundary conditions for solving optical diffusion equations by a finite difference time domain analysis in three-dimensional scattering medium,” Opt. Rev. 16, 283–289 (2009).

[CrossRef]

T. Tanifuji, “Extension of grid separation in the finite difference time domain analysis for predicting time-resolved reflectance of an optical pulse from scattering medium with non-scattering regions,” Opt. Rev. 16, 452–453 (2009).

[CrossRef]

T. Tanifuji and K. Ichitsubo, “Finite difference time domain analysis of diffusion equations with nonuniform grids for time-resolved reflectance of an optical pulse in three-dimensional scattering medium,” Opt. Rev. 12, 480–485 (2005).

[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delphy, “An investigation of light transport through scattering body with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[CrossRef]
[PubMed]

R. D. Frostig, In Vivo Optical Imaging of Brain Function (CRC, 2002), Chap. 8.

[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997), Chap. 9.