Abstract

In traditional three-dimensional (3D) active imaging methods, the detection depth range is observed to increase linearly with the detection time, and the intensity information was not fully utilized. However, by encoding the relative values into pseudovalues, the intensity information was fully utilized, and we found the maximum detection depth range increases exponentially with the detection time. Furthermore, we present a 3D imaging system capable of exponentially expanding the detection depth range. A 3D scene reconstruction was undertaken with the targets placed at a distance of 6001100m. Experimental results indicate that the method expands the detection depth range exponentially without distance resolution loss as compared with the conventional method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301–034310 (2006).
    [CrossRef]
  2. J. F. Andersen, J. Busk, and H. Heiselberg, “Pulsed Raman fiber laser and multispectral imaging in three dimensions,” Appl. Opt. 45, 6198–6204 (2006).
    [CrossRef] [PubMed]
  3. M. Kavakita, K. Iizuka, R. Iwama, K. Takizawa, H. Kikuchi, and F. Sato, “Gain-modulated axi-vision camera (high-speed high-accuracy depth-mapping camera),” Opt. Express 12, 5336–5344 (2004).
    [CrossRef]
  4. M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146–3148 (2007).
    [CrossRef] [PubMed]
  5. Z. Xiuda, Y. Huimin, and J. Yanbing, “Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy,” Opt. Lett. 33, 1219–1221 (2008).
    [CrossRef] [PubMed]
  6. R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, “Modeling the target acquisition performance of laser-range-gated imagers,” Proc. SPIE 5076, 101–111 (2003).
    [CrossRef]
  7. E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations,” Appl. Opt. 48, 5956–5969 (2009).
    [CrossRef] [PubMed]
  8. M. Laurenzis, “Evaluation metrics for range-gated active imaging systems using a Lissajous-type eye pattern,” Appl. Opt. 49, 2271–2776 (2010).
    [CrossRef] [PubMed]
  9. E. Golbraikh and N. S. Kopeika, “Behavior of structure function of refraction coefficients in different turbulent fields,” Appl. Opt. 43, 6151–6156 (2004).
    [CrossRef] [PubMed]
  10. Z. Zalevsky, S. Rozental, and M. Meller, “Usage of turbulence for superresolved imaging,” Opt. Lett. 32, 1072–1074 (2007).
    [CrossRef] [PubMed]

2010

2009

2008

2007

2006

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301–034310 (2006).
[CrossRef]

J. F. Andersen, J. Busk, and H. Heiselberg, “Pulsed Raman fiber laser and multispectral imaging in three dimensions,” Appl. Opt. 45, 6198–6204 (2006).
[CrossRef] [PubMed]

2004

2003

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, “Modeling the target acquisition performance of laser-range-gated imagers,” Proc. SPIE 5076, 101–111 (2003).
[CrossRef]

Andersen, J. F.

Andersson, P.

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301–034310 (2006).
[CrossRef]

Anstett, G.

Busk, J.

Christnacher, F.

Devitt, N.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, “Modeling the target acquisition performance of laser-range-gated imagers,” Proc. SPIE 5076, 101–111 (2003).
[CrossRef]

Elmqvist, M.

Göhler, B.

Golbraikh, E.

Halford, C.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, “Modeling the target acquisition performance of laser-range-gated imagers,” Proc. SPIE 5076, 101–111 (2003).
[CrossRef]

Heiselberg, H.

Huimin, Y.

Iizuka, K.

Iwama, R.

Jacobs, E.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, “Modeling the target acquisition performance of laser-range-gated imagers,” Proc. SPIE 5076, 101–111 (2003).
[CrossRef]

Kavakita, M.

Kikuchi, H.

Kopeika, N. S.

Laurenzis, M.

Lutzmann, P.

Maurer, T.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, “Modeling the target acquisition performance of laser-range-gated imagers,” Proc. SPIE 5076, 101–111 (2003).
[CrossRef]

Meller, M.

Monnin, D.

Repasi, E.

Rozental, S.

Sato, F.

Steinvall, O.

Takizawa, K.

Vollmerhausen, R.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, “Modeling the target acquisition performance of laser-range-gated imagers,” Proc. SPIE 5076, 101–111 (2003).
[CrossRef]

Xiuda, Z.

Yanbing, J.

Zalevsky, Z.

Appl. Opt.

Opt. Eng.

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301–034310 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, “Modeling the target acquisition performance of laser-range-gated imagers,” Proc. SPIE 5076, 101–111 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser energy, gate gain, and intensity profiles of three-time superresolution method.

Fig. 2
Fig. 2

Laser energy, gate gain, and intensity profiles of three-time exponential code method.

Fig. 3
Fig. 3

Measured results of a plane wall.

Fig. 4
Fig. 4

(a), (b), and (c) intensity images obtained by the first, second, and third detection; (d) 3D image presented by false color.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Z = Z 0 + Λ I 2 / I 1 ;
Z = Z 0 + Λ ( 1 + I 3 / I 2 ) ;
Z = Z 0 + Λ ( 3 I 2 / I 3 ) .
Z = Z 0 + Λ I 2 / I 3 ;
Z = Z 0 + Λ ;
Z = Z 0 + Λ ( 2 I 3 / I 2 ) ;
Z = Z 0 + 2 Λ ;
Z = Z 0 + Λ ( 2 + I 1 / I 2 ) ;
Z = Z 0 + 3 Λ ;
Z = Z 0 + Λ ( 4 I 2 / I 1 ) ;
Z = Z 0 + 4 Λ ;
Z = Z 0 + Λ ( 4 + I 2 / I 1 ) ;
Z = Z 0 + 5 Λ ;
Z = Z 0 + Λ ( 6 I 2 / I 1 ) ;
Z = Z 0 + 6 Λ ;
Z = Z 0 + Λ ( 7 I 1 / I 3 ) .
a i , N = [ b 1 , b 2 , b N ] T , where     i = j = 1 N b j 2 N j , b j = 0 or 1 ,
A 3 = [ 00011110 01110100 11000111 ] = [ a 1 , 3 , a 3 , 3 , a 2 , 3 , a 6 , 3 , a 4 , 3 , a 7 , 3 , a 5 , 3 , a 1 , 3 ] .
A N = [ a 1 , N , A N , a 1 , N ] .
A 3 = [ a 3 , 3 , a 2 , 3 , a 6 , 3 , a 4 , 3 , a 7 , 3 , a 5 , 3 ] , A 3 = [ a 1 , 3 , A 3 , a 1 , 3 ] .
A N + 1 = [ a 1 , N , A N , a 1 , N , A N 1 , o N , 0 , e N ] ,
A N + 1 = [ a 1 , N + 1 , A N + 1 , a 1 , N + 1 ] ,

Metrics