Abstract

Digital holographic microscopy produces quantitative phase analysis of a specimen with excellent optical precision. In this study, this imaging method has been used to observe and measure induced thermal lensing by optical excitation. Previous studies have derived these phase shifts from intensity profiles for the determination of photothermal properties of very transparent materials. We have measured physical observables and determined the absorption coefficients of methanol and ethanol with improved precision and accuracy over traditional thermal lens spectroscopy methods.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Marcano, C. Loper, and N. Melikechi, “High sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
    [CrossRef]
  2. H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9, 385–389 (2006).
  3. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
    [CrossRef]
  4. J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin-film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
    [CrossRef]
  5. J. Shen, A. J. Soroka, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
    [CrossRef]
  6. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  8. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [CrossRef] [PubMed]
  9. S. D. Woodruff and E. S. Yeung, “Refractive index and absorption detector for liquid chromatography based on Fabry–Perot interferometry,” Anal. Chem. 54, 1174–1178 (1982).
    [CrossRef]
  10. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,” Opt. Lett. 30, 2092–2094(2005).
    [CrossRef] [PubMed]
  11. D. C. Clark and M. K. Kim, “Nanometric measurement of optical pressure deformation of fluid interface by digital holography,” Proc. SPIE 7908, 79080T (2011).
    [CrossRef]
  12. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
    [CrossRef] [PubMed]
  13. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
    [CrossRef]
  14. S. M. Colcombe, R. D. Lowe, and R. D. Snook, “Thermal lens investigation of the temperature dependence of the refractive index of aqueous electrolyte solutions,” Anal. Chim. Acta 356, 277–288 (1997).
    [CrossRef]

2011 (1)

D. C. Clark and M. K. Kim, “Nanometric measurement of optical pressure deformation of fluid interface by digital holography,” Proc. SPIE 7908, 79080T (2011).
[CrossRef]

2006 (1)

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9, 385–389 (2006).

2005 (2)

2003 (1)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

2001 (1)

A. Marcano, C. Loper, and N. Melikechi, “High sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

1999 (1)

1997 (2)

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
[CrossRef] [PubMed]

S. M. Colcombe, R. D. Lowe, and R. D. Snook, “Thermal lens investigation of the temperature dependence of the refractive index of aqueous electrolyte solutions,” Anal. Chim. Acta 356, 277–288 (1997).
[CrossRef]

1995 (1)

J. Shen, A. J. Soroka, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

1994 (1)

J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin-film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

1992 (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

1982 (1)

S. D. Woodruff and E. S. Yeung, “Refractive index and absorption detector for liquid chromatography based on Fabry–Perot interferometry,” Anal. Chem. 54, 1174–1178 (1982).
[CrossRef]

Babin, M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Baesso, M. L.

J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin-film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

Bevilacqua, F.

Bialkowski, S. E.

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Cabrera, H.

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9, 385–389 (2006).

Castellanos, Y.

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9, 385–389 (2006).

Clark, D. C.

D. C. Clark and M. K. Kim, “Nanometric measurement of optical pressure deformation of fluid interface by digital holography,” Proc. SPIE 7908, 79080T (2011).
[CrossRef]

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Colcombe, S. M.

S. M. Colcombe, R. D. Lowe, and R. D. Snook, “Thermal lens investigation of the temperature dependence of the refractive index of aqueous electrolyte solutions,” Anal. Chim. Acta 356, 277–288 (1997).
[CrossRef]

Cuche, E.

Depeursinge, C.

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Gray, D.

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Kim, M. K.

Lo, C.-M.

Loper, C.

A. Marcano, C. Loper, and N. Melikechi, “High sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

Lowe, R. D.

S. M. Colcombe, R. D. Lowe, and R. D. Snook, “Thermal lens investigation of the temperature dependence of the refractive index of aqueous electrolyte solutions,” Anal. Chim. Acta 356, 277–288 (1997).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Mann, C. J.

Marcano, A.

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9, 385–389 (2006).

A. Marcano, C. Loper, and N. Melikechi, “High sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

Melikechi, N.

A. Marcano, C. Loper, and N. Melikechi, “High sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Pegau, W. S.

Shen, J.

J. Shen, A. J. Soroka, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin-film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Snook, R. D.

S. M. Colcombe, R. D. Lowe, and R. D. Snook, “Thermal lens investigation of the temperature dependence of the refractive index of aqueous electrolyte solutions,” Anal. Chim. Acta 356, 277–288 (1997).
[CrossRef]

J. Shen, A. J. Soroka, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin-film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Soroka, A. J.

J. Shen, A. J. Soroka, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

Stramski, D.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Woodruff, S. D.

S. D. Woodruff and E. S. Yeung, “Refractive index and absorption detector for liquid chromatography based on Fabry–Perot interferometry,” Anal. Chem. 54, 1174–1178 (1982).
[CrossRef]

Yeung, E. S.

S. D. Woodruff and E. S. Yeung, “Refractive index and absorption detector for liquid chromatography based on Fabry–Perot interferometry,” Anal. Chem. 54, 1174–1178 (1982).
[CrossRef]

Yu, L.

Zaneveld, J. R. V.

Anal. Chem. (1)

S. D. Woodruff and E. S. Yeung, “Refractive index and absorption detector for liquid chromatography based on Fabry–Perot interferometry,” Anal. Chem. 54, 1174–1178 (1982).
[CrossRef]

Anal. Chim. Acta (1)

S. M. Colcombe, R. D. Lowe, and R. D. Snook, “Thermal lens investigation of the temperature dependence of the refractive index of aqueous electrolyte solutions,” Anal. Chim. Acta 356, 277–288 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Marcano, C. Loper, and N. Melikechi, “High sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

Chem. Phys. (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Condens. Matter Phys. (1)

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9, 385–389 (2006).

J. Appl. Phys. (2)

J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin-film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

J. Shen, A. J. Soroka, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

J. Geophys. Res. (1)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

D. C. Clark and M. K. Kim, “Nanometric measurement of optical pressure deformation of fluid interface by digital holography,” Proc. SPIE 7908, 79080T (2011).
[CrossRef]

Other (1)

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus. The excitation beam (green) is focused downward through the sample by the probe-shared microscope objective (MO). The probe beam (red) is the object arm of the Mach–Zehnder interferometer and passes upward through the sample, combines with the reference beam, and creates the hologram captured by the CCD camera.

Fig. 2
Fig. 2

Phase images of methanol with (A) no excitation beam and (B) 700mW excitation beam power. The phase scale of both images ranges from 0 (black) to 2 π (white) and the spatial scale bar is 100 μm . The dashed line indicates the selected cross section used for further analysis.

Fig. 3
Fig. 3

Cross-sectional profile of the thermal lens shown in Fig. 2b (dashed curve).

Fig. 4
Fig. 4

Experimental data (scatter plots) and model predictions (solid curves) at 330 mW , 440 mW , and 550 mW excitation powers for (A) methanol and (B) ethanol.

Tables (1)

Tables Icon

Table 1 Experimental Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( r , t ) = 2 P α π c ρ w 2 0 t 1 1 + 2 t / τ exp ( 2 r 2 / w 2 1 + 2 t / τ ) d t ,
n ( r , t ) = n 0 + d n d T Δ T ( r , t ) ,
ϕ = 2 π λ l [ n ( r , t ) n ( 0 , t ) ] = 2 π λ l d n d T [ Δ T ( r , t ) Δ T ( 0 , t ) ] ,
ϕ = θ 0 t 1 1 + 2 t / τ [ 1 exp ( 2 r 2 / w 2 1 + 2 t / τ ) ] d t τ ,
θ = P α l ( d n / d T ) κ λ .

Metrics