Abstract

In fringe projection, the CCD camera and the projector are often placed at equal height. In this paper, we will study the calibration of an unequal arrangement of the CCD camera and the projector. The principle of fringe projection with two-dimensional digital image correlation to acquire the profile of object surface is described in detail. By formula derivation and experiment, the linear relationship between the out-of-plane calibration coefficient and the y coordinate is clearly found. To acquire the three-dimensional (3D) information of an object correctly, this paper presents an effective calibration method with linear least-squares fitting, which is very simple in principle and calibration. Experiments are implemented to validate the availability and reliability of the calibration method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
    [CrossRef]
  2. G. Mauvoisin, F. Brémand, and A. Lagarde, “Three-dimensional shape reconstruction by phase-shifting shadow moiré,” Appl. Opt. 33, 2163–2169 (1994).
    [CrossRef] [PubMed]
  3. L. H. Jin, Y. Kodera, T. Yoshizawa, and Y. Otani, “Shadow moiré profilometry using the phase-shifting method,” Opt. Eng. 39, 2119–2123 (2000).
    [CrossRef]
  4. H. Xie, C. G. Boay, T. Liu, Y. Lu, J. Yu, and A. Asundi, “Phase-shifting moiré method with an atomic force microscope,” Appl. Opt. 40, 6193–6198 (2001).
    [CrossRef]
  5. C. G. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).
    [CrossRef] [PubMed]
  6. J. A. N. Buytaert and J. J. J. Dirckx, “Moiré profilometry using liquid crystals for projection and demodulation,” Opt. Express 16, 179–193 (2008).
    [CrossRef] [PubMed]
  7. I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85–89 (2001).
    [CrossRef]
  8. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45 (29), 7610–7616 (2006).
    [CrossRef] [PubMed]
  9. C. J. Tay, H. M. Shang, and A. L. Neo, “Measurement of slopes and profile of an optical lens by shearography,” Measurement 18, 185–191 (1996).
    [CrossRef]
  10. H. M. Shang, Y. Y. Hung, W. D. Luo, and F. Chen, “Surface profiling using shearography,” Opt. Eng. 39, 23–31 (2000).
    [CrossRef]
  11. R. M. Groves, S. W. James, and R. P. Tatam, “Shape and slope measurement by source displacement in shearography,” Opt. Lasers Eng. 41, doi: S0143-8166(0102)00177-X (2004).
    [CrossRef]
  12. Y. Y. Hung and H. P. Ho, “Shearography: An optical measurement technique and applications,” Mater. Sci. Eng. R 49, 61–87 (2005).
    [CrossRef]
  13. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Shape measurement by use of temporal Fourier transformation in dual-beam illumination speckle interferometry,” Appl. Opt. 37, 3385–3390 (1998).
    [CrossRef]
  14. K. Genovese, L. Lamberti, and C. Pappalettere, “A comprehensive ESPI based system for combined measurement of shape and deformation of electronic components,” Opt. Lasers Eng. 42, 543–562 (2004).
    [CrossRef]
  15. E. A. Barbosa and A. C. L. Lino, “Multiwavelength electronic speckle pattern interferometry for surface shape measurement,” Appl. Opt. 46, 2624–2631 (2007).
    [CrossRef] [PubMed]
  16. S. McNeill, M. Sutton, Z. Miao, and J. Ma, “Measurement of surface profile using digital image correlation,” Exp. Mech. 37, 13–20 (1997).
    [CrossRef]
  17. J. D. Helm, M. A. Sutton, and S. R. McNeill, “Deformations in wide, center-notched, thin panels, part I: three-dimensional shape and deformation measurements by computer vision,” Opt. Eng. 42, 1293–1305 (2003).
    [CrossRef]
  18. M. A. Sutton, J. H. Yan, X. M. Deng, C. S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003 (2007).
    [CrossRef]
  19. C. Quan, C. J. Tay, H. M. Shang, and P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis,” Opt. Commun. 118, 479–483(1995).
    [CrossRef]
  20. C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29(2001).
    [CrossRef]
  21. C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
    [CrossRef]
  22. L. Chen, C. Quan, C. J. Tay, and Y. Huang, “Fringe contrast-based 3D profilometry using fringe projection,” Optik (Jena) 116, 123–128 (2005).
    [CrossRef]
  23. Z. Y. Wang, H. Du, and H. B. Bi, “Out-of-plane shape determination in generalized fringe projection profilometry,” Opt. Express 14, 12122–12133 (2006).
    [CrossRef] [PubMed]
  24. H. Du and Z. Y. Wang, “Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system,” Opt. Lett. 32, 2438–2440 (2007).
    [CrossRef] [PubMed]
  25. Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
    [CrossRef]
  26. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
    [CrossRef]
  27. B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).
    [CrossRef] [PubMed]
  28. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  29. L.-C. Chen, H.-W. Ho, and X.-L. Nguyen, “Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction,” Opt. Lasers Eng. 48, 182–190 (2010).
    [CrossRef]
  30. C. G. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2329–2335 (2003).
    [CrossRef] [PubMed]
  31. F. J. Yang and X. Y. He, “Two-step phase-shifting fringe projection profilometry: intensity derivative approach,” Appl. Opt. 46, 7172–7178 (2007).
    [CrossRef] [PubMed]
  32. J. Pan, P. S. Huang, and F.-P. Chiang, “Color phase-shifting technique for three-dimensional shape measurement,” Opt. Eng. 45, 013602 (2006).
    [CrossRef]
  33. P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
    [CrossRef]
  34. S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601(2006).
    [CrossRef]
  35. S. Zhang, D. Van Der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
    [CrossRef] [PubMed]
  36. L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009(2010).
    [CrossRef]
  37. R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robotics Autom. 3, 323–344 (1987).
    [CrossRef]
  38. J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 14, 965–980 (1992).
    [CrossRef]
  39. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334(2000).
    [CrossRef]
  40. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
    [CrossRef]
  41. X. Chen, J. Xi, Y. Jin, and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection,” Opt. Lasers Eng. 47, 310–319 (2009).
    [CrossRef]
  42. L. Huang, P. S. K. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548(2010).
    [CrossRef] [PubMed]
  43. X. Y. He and M. Jiang, “3D information acquired by the correlation of projected fringe patterns,” Proc. SPIE 5852, 257–263 (2005).
    [CrossRef]
  44. X. Mao, W. Chen, and X. Su, “Improved Fourier-transform profilometry,” Appl. Opt. 46, 664–668 (2007).
    [CrossRef] [PubMed]
  45. E. Zappa and G. Busca, “Fourier-transform profilometry calibration based on an exhaustive geometric model of the system,” Opt. Lasers Eng. 47, 754–767 (2009).
    [CrossRef]
  46. F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48, 1132–1139 (2010).
    [CrossRef]
  47. B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
    [CrossRef]
  48. B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001(2009).
    [CrossRef]

2010

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009(2010).
[CrossRef]

L.-C. Chen, H.-W. Ho, and X.-L. Nguyen, “Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction,” Opt. Lasers Eng. 48, 182–190 (2010).
[CrossRef]

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48, 1132–1139 (2010).
[CrossRef]

L. Huang, P. S. K. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548(2010).
[CrossRef] [PubMed]

S. Zhang, D. Van Der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
[CrossRef] [PubMed]

2009

E. Zappa and G. Busca, “Fourier-transform profilometry calibration based on an exhaustive geometric model of the system,” Opt. Lasers Eng. 47, 754–767 (2009).
[CrossRef]

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

X. Chen, J. Xi, Y. Jin, and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection,” Opt. Lasers Eng. 47, 310–319 (2009).
[CrossRef]

2008

2007

2006

J. Pan, P. S. Huang, and F.-P. Chiang, “Color phase-shifting technique for three-dimensional shape measurement,” Opt. Eng. 45, 013602 (2006).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601(2006).
[CrossRef]

I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45 (29), 7610–7616 (2006).
[CrossRef] [PubMed]

Z. Y. Wang, H. Du, and H. B. Bi, “Out-of-plane shape determination in generalized fringe projection profilometry,” Opt. Express 14, 12122–12133 (2006).
[CrossRef] [PubMed]

2005

C. G. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).
[CrossRef] [PubMed]

Y. Y. Hung and H. P. Ho, “Shearography: An optical measurement technique and applications,” Mater. Sci. Eng. R 49, 61–87 (2005).
[CrossRef]

X. Y. He and M. Jiang, “3D information acquired by the correlation of projected fringe patterns,” Proc. SPIE 5852, 257–263 (2005).
[CrossRef]

L. Chen, C. Quan, C. J. Tay, and Y. Huang, “Fringe contrast-based 3D profilometry using fringe projection,” Optik (Jena) 116, 123–128 (2005).
[CrossRef]

2004

K. Genovese, L. Lamberti, and C. Pappalettere, “A comprehensive ESPI based system for combined measurement of shape and deformation of electronic components,” Opt. Lasers Eng. 42, 543–562 (2004).
[CrossRef]

R. M. Groves, S. W. James, and R. P. Tatam, “Shape and slope measurement by source displacement in shearography,” Opt. Lasers Eng. 41, doi: S0143-8166(0102)00177-X (2004).
[CrossRef]

2003

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

J. D. Helm, M. A. Sutton, and S. R. McNeill, “Deformations in wide, center-notched, thin panels, part I: three-dimensional shape and deformation measurements by computer vision,” Opt. Eng. 42, 1293–1305 (2003).
[CrossRef]

C. G. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2329–2335 (2003).
[CrossRef] [PubMed]

2002

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[CrossRef]

2001

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29(2001).
[CrossRef]

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85–89 (2001).
[CrossRef]

H. Xie, C. G. Boay, T. Liu, Y. Lu, J. Yu, and A. Asundi, “Phase-shifting moiré method with an atomic force microscope,” Appl. Opt. 40, 6193–6198 (2001).
[CrossRef]

2000

L. H. Jin, Y. Kodera, T. Yoshizawa, and Y. Otani, “Shadow moiré profilometry using the phase-shifting method,” Opt. Eng. 39, 2119–2123 (2000).
[CrossRef]

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

H. M. Shang, Y. Y. Hung, W. D. Luo, and F. Chen, “Surface profiling using shearography,” Opt. Eng. 39, 23–31 (2000).
[CrossRef]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334(2000).
[CrossRef]

1998

1997

S. McNeill, M. Sutton, Z. Miao, and J. Ma, “Measurement of surface profile using digital image correlation,” Exp. Mech. 37, 13–20 (1997).
[CrossRef]

1996

C. J. Tay, H. M. Shang, and A. L. Neo, “Measurement of slopes and profile of an optical lens by shearography,” Measurement 18, 185–191 (1996).
[CrossRef]

1995

C. Quan, C. J. Tay, H. M. Shang, and P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis,” Opt. Commun. 118, 479–483(1995).
[CrossRef]

1994

1992

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 14, 965–980 (1992).
[CrossRef]

1987

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robotics Autom. 3, 323–344 (1987).
[CrossRef]

1982

Asundi, A.

Barbosa, E. A.

Barnes, J. C.

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Bi, H. B.

Boay, C. G.

Brémand, F.

Brown, G. M.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Bryanston-Cross, P. J.

C. Quan, C. J. Tay, H. M. Shang, and P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis,” Opt. Commun. 118, 479–483(1995).
[CrossRef]

Busca, G.

E. Zappa and G. Busca, “Fourier-transform profilometry calibration based on an exhaustive geometric model of the system,” Opt. Lasers Eng. 47, 754–767 (2009).
[CrossRef]

Buytaert, J. A. N.

Chen, F.

H. M. Shang, Y. Y. Hung, W. D. Luo, and F. Chen, “Surface profiling using shearography,” Opt. Eng. 39, 23–31 (2000).
[CrossRef]

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Chen, L.

L. Chen, C. Quan, C. J. Tay, and Y. Huang, “Fringe contrast-based 3D profilometry using fringe projection,” Optik (Jena) 116, 123–128 (2005).
[CrossRef]

Chen, L. C.

L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009(2010).
[CrossRef]

Chen, L.-C.

L.-C. Chen, H.-W. Ho, and X.-L. Nguyen, “Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction,” Opt. Lasers Eng. 48, 182–190 (2010).
[CrossRef]

Chen, W.

Chen, X.

X. Chen, J. Xi, Y. Jin, and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection,” Opt. Lasers Eng. 47, 310–319 (2009).
[CrossRef]

Cheng, C. S.

M. A. Sutton, J. H. Yan, X. M. Deng, C. S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003 (2007).
[CrossRef]

Chiang, F. P.

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

Chiang, F.-P.

J. Pan, P. S. Huang, and F.-P. Chiang, “Color phase-shifting technique for three-dimensional shape measurement,” Opt. Eng. 45, 013602 (2006).
[CrossRef]

Chua, P. S. K.

Cohen, P.

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 14, 965–980 (1992).
[CrossRef]

Dai, F.-L.

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Deng, X. M.

M. A. Sutton, J. H. Yan, X. M. Deng, C. S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003 (2007).
[CrossRef]

Dirckx, J. J. J.

Du, H.

Franze, B.

Fu, Y.

Gao, J. X.

Genovese, K.

K. Genovese, L. Lamberti, and C. Pappalettere, “A comprehensive ESPI based system for combined measurement of shape and deformation of electronic components,” Opt. Lasers Eng. 42, 543–562 (2004).
[CrossRef]

Groves, R. M.

R. M. Groves, S. W. James, and R. P. Tatam, “Shape and slope measurement by source displacement in shearography,” Opt. Lasers Eng. 41, doi: S0143-8166(0102)00177-X (2004).
[CrossRef]

Haible, P.

He, X.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48, 1132–1139 (2010).
[CrossRef]

He, X. Y.

F. J. Yang and X. Y. He, “Two-step phase-shifting fringe projection profilometry: intensity derivative approach,” Appl. Opt. 46, 7172–7178 (2007).
[CrossRef] [PubMed]

X. Y. He and M. Jiang, “3D information acquired by the correlation of projected fringe patterns,” Proc. SPIE 5852, 257–263 (2005).
[CrossRef]

C. G. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2329–2335 (2003).
[CrossRef] [PubMed]

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[CrossRef]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29(2001).
[CrossRef]

Helm, J. D.

J. D. Helm, M. A. Sutton, and S. R. McNeill, “Deformations in wide, center-notched, thin panels, part I: three-dimensional shape and deformation measurements by computer vision,” Opt. Eng. 42, 1293–1305 (2003).
[CrossRef]

Herniou, M.

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 14, 965–980 (1992).
[CrossRef]

Ho, H. P.

Y. Y. Hung and H. P. Ho, “Shearography: An optical measurement technique and applications,” Mater. Sci. Eng. R 49, 61–87 (2005).
[CrossRef]

Ho, H.-W.

L.-C. Chen, H.-W. Ho, and X.-L. Nguyen, “Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction,” Opt. Lasers Eng. 48, 182–190 (2010).
[CrossRef]

Huang, L.

Huang, P. S.

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601(2006).
[CrossRef]

J. Pan, P. S. Huang, and F.-P. Chiang, “Color phase-shifting technique for three-dimensional shape measurement,” Opt. Eng. 45, 013602 (2006).
[CrossRef]

Huang, P. S. S.

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

Huang, Y.

L. Chen, C. Quan, C. J. Tay, and Y. Huang, “Fringe contrast-based 3D profilometry using fringe projection,” Optik (Jena) 116, 123–128 (2005).
[CrossRef]

Hung, Y. Y.

Y. Y. Hung and H. P. Ho, “Shearography: An optical measurement technique and applications,” Mater. Sci. Eng. R 49, 61–87 (2005).
[CrossRef]

H. M. Shang, Y. Y. Hung, W. D. Luo, and F. Chen, “Surface profiling using shearography,” Opt. Eng. 39, 23–31 (2000).
[CrossRef]

Ida, T.

Ina, H.

James, S. W.

R. M. Groves, S. W. James, and R. P. Tatam, “Shape and slope measurement by source displacement in shearography,” Opt. Lasers Eng. 41, doi: S0143-8166(0102)00177-X (2004).
[CrossRef]

Jiang, M.

X. Y. He and M. Jiang, “3D information acquired by the correlation of projected fringe patterns,” Proc. SPIE 5852, 257–263 (2005).
[CrossRef]

Jin, L. H.

L. H. Jin, Y. Kodera, T. Yoshizawa, and Y. Otani, “Shadow moiré profilometry using the phase-shifting method,” Opt. Eng. 39, 2119–2123 (2000).
[CrossRef]

Jin, Y.

X. Chen, J. Xi, Y. Jin, and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection,” Opt. Lasers Eng. 47, 310–319 (2009).
[CrossRef]

Joenathan, C.

Kang, X.

C. G. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2329–2335 (2003).
[CrossRef] [PubMed]

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[CrossRef]

Kato, J.

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85–89 (2001).
[CrossRef]

Kobayashi, S.

Kodera, Y.

L. H. Jin, Y. Kodera, T. Yoshizawa, and Y. Otani, “Shadow moiré profilometry using the phase-shifting method,” Opt. Eng. 39, 2119–2123 (2000).
[CrossRef]

Lagarde, A.

Lamberti, L.

K. Genovese, L. Lamberti, and C. Pappalettere, “A comprehensive ESPI based system for combined measurement of shape and deformation of electronic components,” Opt. Lasers Eng. 42, 543–562 (2004).
[CrossRef]

Lino, A. C. L.

Liu, T.

Liu, W.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48, 1132–1139 (2010).
[CrossRef]

Lu, Y.

Luo, W. D.

H. M. Shang, Y. Y. Hung, W. D. Luo, and F. Chen, “Surface profiling using shearography,” Opt. Eng. 39, 23–31 (2000).
[CrossRef]

Ma, J.

S. McNeill, M. Sutton, Z. Miao, and J. Ma, “Measurement of surface profile using digital image correlation,” Exp. Mech. 37, 13–20 (1997).
[CrossRef]

Mao, X.

Mauvoisin, G.

McNeill, S.

S. McNeill, M. Sutton, Z. Miao, and J. Ma, “Measurement of surface profile using digital image correlation,” Exp. Mech. 37, 13–20 (1997).
[CrossRef]

McNeill, S. R.

J. D. Helm, M. A. Sutton, and S. R. McNeill, “Deformations in wide, center-notched, thin panels, part I: three-dimensional shape and deformation measurements by computer vision,” Opt. Eng. 42, 1293–1305 (2003).
[CrossRef]

Miao, Z.

S. McNeill, M. Sutton, Z. Miao, and J. Ma, “Measurement of surface profile using digital image correlation,” Exp. Mech. 37, 13–20 (1997).
[CrossRef]

Neo, A. L.

C. J. Tay, H. M. Shang, and A. L. Neo, “Measurement of slopes and profile of an optical lens by shearography,” Measurement 18, 185–191 (1996).
[CrossRef]

Nguyen, D. A.

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Nguyen, X. L.

L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009(2010).
[CrossRef]

Nguyen, X.-L.

L.-C. Chen, H.-W. Ho, and X.-L. Nguyen, “Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction,” Opt. Lasers Eng. 48, 182–190 (2010).
[CrossRef]

Ohta, S.

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85–89 (2001).
[CrossRef]

Oliver, J.

Otani, Y.

L. H. Jin, Y. Kodera, T. Yoshizawa, and Y. Otani, “Shadow moiré profilometry using the phase-shifting method,” Opt. Eng. 39, 2119–2123 (2000).
[CrossRef]

Pan, B.

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).
[CrossRef] [PubMed]

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Pan, J.

J. Pan, P. S. Huang, and F.-P. Chiang, “Color phase-shifting technique for three-dimensional shape measurement,” Opt. Eng. 45, 013602 (2006).
[CrossRef]

Pappalettere, C.

K. Genovese, L. Lamberti, and C. Pappalettere, “A comprehensive ESPI based system for combined measurement of shape and deformation of electronic components,” Opt. Lasers Eng. 42, 543–562 (2004).
[CrossRef]

Qian, K.

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

Quan, C.

L. Chen, C. Quan, C. J. Tay, and Y. Huang, “Fringe contrast-based 3D profilometry using fringe projection,” Optik (Jena) 116, 123–128 (2005).
[CrossRef]

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[CrossRef]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29(2001).
[CrossRef]

C. Quan, C. J. Tay, H. M. Shang, and P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis,” Opt. Commun. 118, 479–483(1995).
[CrossRef]

Quan, C. G.

Shang, H. M.

C. G. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2329–2335 (2003).
[CrossRef] [PubMed]

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[CrossRef]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29(2001).
[CrossRef]

H. M. Shang, Y. Y. Hung, W. D. Luo, and F. Chen, “Surface profiling using shearography,” Opt. Eng. 39, 23–31 (2000).
[CrossRef]

C. J. Tay, H. M. Shang, and A. L. Neo, “Measurement of slopes and profile of an optical lens by shearography,” Measurement 18, 185–191 (1996).
[CrossRef]

C. Quan, C. J. Tay, H. M. Shang, and P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis,” Opt. Commun. 118, 479–483(1995).
[CrossRef]

Shi, H.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48, 1132–1139 (2010).
[CrossRef]

Song, M. M.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Su, X.

Sun, J.

X. Chen, J. Xi, Y. Jin, and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection,” Opt. Lasers Eng. 47, 310–319 (2009).
[CrossRef]

Sutton, M.

S. McNeill, M. Sutton, Z. Miao, and J. Ma, “Measurement of surface profile using digital image correlation,” Exp. Mech. 37, 13–20 (1997).
[CrossRef]

Sutton, M. A.

M. A. Sutton, J. H. Yan, X. M. Deng, C. S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003 (2007).
[CrossRef]

J. D. Helm, M. A. Sutton, and S. R. McNeill, “Deformations in wide, center-notched, thin panels, part I: three-dimensional shape and deformation measurements by computer vision,” Opt. Eng. 42, 1293–1305 (2003).
[CrossRef]

Takeda, M.

Tan, J. M.

Tatam, R. P.

R. M. Groves, S. W. James, and R. P. Tatam, “Shape and slope measurement by source displacement in shearography,” Opt. Lasers Eng. 41, doi: S0143-8166(0102)00177-X (2004).
[CrossRef]

Tay, C. J.

L. Chen, C. Quan, C. J. Tay, and Y. Huang, “Fringe contrast-based 3D profilometry using fringe projection,” Optik (Jena) 116, 123–128 (2005).
[CrossRef]

C. G. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).
[CrossRef] [PubMed]

C. G. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2329–2335 (2003).
[CrossRef] [PubMed]

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[CrossRef]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29(2001).
[CrossRef]

C. J. Tay, H. M. Shang, and A. L. Neo, “Measurement of slopes and profile of an optical lens by shearography,” Measurement 18, 185–191 (1996).
[CrossRef]

C. Quan, C. J. Tay, H. M. Shang, and P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis,” Opt. Commun. 118, 479–483(1995).
[CrossRef]

Tiziani, H. J.

Tsai, R.

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robotics Autom. 3, 323–344 (1987).
[CrossRef]

Van Der Weide, D.

Wang, C. F.

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29(2001).
[CrossRef]

Wang, Z.

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Wang, Z. Y.

Weng, J.

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 14, 965–980 (1992).
[CrossRef]

Xi, J.

X. Chen, J. Xi, Y. Jin, and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection,” Opt. Lasers Eng. 47, 310–319 (2009).
[CrossRef]

Xie, H.

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

H. Xie, C. G. Boay, T. Liu, Y. Lu, J. Yu, and A. Asundi, “Phase-shifting moiré method with an atomic force microscope,” Appl. Opt. 40, 6193–6198 (2001).
[CrossRef]

Xie, H. M.

Xie, H.-M.

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Xu, B.-Q.

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Yamaguchi, I.

Yamashita, K.

Yan, J. H.

M. A. Sutton, J. H. Yan, X. M. Deng, C. S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003 (2007).
[CrossRef]

Yang, F. J.

Yokota, M.

Yoshizawa, T.

L. H. Jin, Y. Kodera, T. Yoshizawa, and Y. Otani, “Shadow moiré profilometry using the phase-shifting method,” Opt. Eng. 39, 2119–2123 (2000).
[CrossRef]

Yu, J.

Zappa, E.

E. Zappa and G. Busca, “Fourier-transform profilometry calibration based on an exhaustive geometric model of the system,” Opt. Lasers Eng. 47, 754–767 (2009).
[CrossRef]

Zavattieri, P.

M. A. Sutton, J. H. Yan, X. M. Deng, C. S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003 (2007).
[CrossRef]

Zhang, C. P.

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

Zhang, S.

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

S. Zhang, D. Van Der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
[CrossRef] [PubMed]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601(2006).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334(2000).
[CrossRef]

Zhu, F.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48, 1132–1139 (2010).
[CrossRef]

Appl. Opt.

C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Shape measurement by use of temporal Fourier transformation in dual-beam illumination speckle interferometry,” Appl. Opt. 37, 3385–3390 (1998).
[CrossRef]

H. Xie, C. G. Boay, T. Liu, Y. Lu, J. Yu, and A. Asundi, “Phase-shifting moiré method with an atomic force microscope,” Appl. Opt. 40, 6193–6198 (2001).
[CrossRef]

C. G. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2329–2335 (2003).
[CrossRef] [PubMed]

C. G. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).
[CrossRef] [PubMed]

I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45 (29), 7610–7616 (2006).
[CrossRef] [PubMed]

G. Mauvoisin, F. Brémand, and A. Lagarde, “Three-dimensional shape reconstruction by phase-shifting shadow moiré,” Appl. Opt. 33, 2163–2169 (1994).
[CrossRef] [PubMed]

X. Mao, W. Chen, and X. Su, “Improved Fourier-transform profilometry,” Appl. Opt. 46, 664–668 (2007).
[CrossRef] [PubMed]

E. A. Barbosa and A. C. L. Lino, “Multiwavelength electronic speckle pattern interferometry for surface shape measurement,” Appl. Opt. 46, 2624–2631 (2007).
[CrossRef] [PubMed]

F. J. Yang and X. Y. He, “Two-step phase-shifting fringe projection profilometry: intensity derivative approach,” Appl. Opt. 46, 7172–7178 (2007).
[CrossRef] [PubMed]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527–5533 (2008).
[CrossRef] [PubMed]

L. Huang, P. S. K. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548(2010).
[CrossRef] [PubMed]

Exp. Mech.

S. McNeill, M. Sutton, Z. Miao, and J. Ma, “Measurement of surface profile using digital image correlation,” Exp. Mech. 37, 13–20 (1997).
[CrossRef]

IEEE J. Robotics Autom.

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robotics Autom. 3, 323–344 (1987).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intell.

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 14, 965–980 (1992).
[CrossRef]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334(2000).
[CrossRef]

J. Opt. Soc. Am.

Mater. Sci. Eng. R

Y. Y. Hung and H. P. Ho, “Shearography: An optical measurement technique and applications,” Mater. Sci. Eng. R 49, 61–87 (2005).
[CrossRef]

Meas. Sci. Technol.

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009(2010).
[CrossRef]

Measurement

C. J. Tay, H. M. Shang, and A. L. Neo, “Measurement of slopes and profile of an optical lens by shearography,” Measurement 18, 185–191 (1996).
[CrossRef]

Opt. Commun.

C. Quan, C. J. Tay, H. M. Shang, and P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis,” Opt. Commun. 118, 479–483(1995).
[CrossRef]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29(2001).
[CrossRef]

Opt. Eng.

J. D. Helm, M. A. Sutton, and S. R. McNeill, “Deformations in wide, center-notched, thin panels, part I: three-dimensional shape and deformation measurements by computer vision,” Opt. Eng. 42, 1293–1305 (2003).
[CrossRef]

M. A. Sutton, J. H. Yan, X. M. Deng, C. S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003 (2007).
[CrossRef]

L. H. Jin, Y. Kodera, T. Yoshizawa, and Y. Otani, “Shadow moiré profilometry using the phase-shifting method,” Opt. Eng. 39, 2119–2123 (2000).
[CrossRef]

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

H. M. Shang, Y. Y. Hung, W. D. Luo, and F. Chen, “Surface profiling using shearography,” Opt. Eng. 39, 23–31 (2000).
[CrossRef]

J. Pan, P. S. Huang, and F.-P. Chiang, “Color phase-shifting technique for three-dimensional shape measurement,” Opt. Eng. 45, 013602 (2006).
[CrossRef]

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601(2006).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

Opt. Express

Opt. Laser Technol.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[CrossRef]

Opt. Lasers Eng.

R. M. Groves, S. W. James, and R. P. Tatam, “Shape and slope measurement by source displacement in shearography,” Opt. Lasers Eng. 41, doi: S0143-8166(0102)00177-X (2004).
[CrossRef]

K. Genovese, L. Lamberti, and C. Pappalettere, “A comprehensive ESPI based system for combined measurement of shape and deformation of electronic components,” Opt. Lasers Eng. 42, 543–562 (2004).
[CrossRef]

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

X. Chen, J. Xi, Y. Jin, and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection,” Opt. Lasers Eng. 47, 310–319 (2009).
[CrossRef]

L.-C. Chen, H.-W. Ho, and X.-L. Nguyen, “Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction,” Opt. Lasers Eng. 48, 182–190 (2010).
[CrossRef]

E. Zappa and G. Busca, “Fourier-transform profilometry calibration based on an exhaustive geometric model of the system,” Opt. Lasers Eng. 47, 754–767 (2009).
[CrossRef]

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48, 1132–1139 (2010).
[CrossRef]

Opt. Lett.

Opt. Rev.

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85–89 (2001).
[CrossRef]

Optik (Jena)

L. Chen, C. Quan, C. J. Tay, and Y. Huang, “Fringe contrast-based 3D profilometry using fringe projection,” Optik (Jena) 116, 123–128 (2005).
[CrossRef]

Proc. SPIE

X. Y. He and M. Jiang, “3D information acquired by the correlation of projected fringe patterns,” Proc. SPIE 5852, 257–263 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the fringe projection method.

Fig. 2
Fig. 2

DIC results of two images translated only along the z direction.

Fig. 3
Fig. 3

Relationship between displacement and offset when y = 104 .

Fig. 4
Fig. 4

Distribution of coefficient k and the corresponding linear fitting.

Fig. 5
Fig. 5

Distribution of k of coarse calibration and the corresponding linear fitting.

Fig. 6
Fig. 6

Three distributions of k along the y direction with different H 1 .

Fig. 7
Fig. 7

3D plot of 0, 1.5, 4.5, 7.5, and 13.5 mm .

Fig. 8
Fig. 8

Specimen and the area of interest.

Fig. 9
Fig. 9

Captured images of (a) the reference plane and (b) the specimen.

Fig. 10
Fig. 10

(a) 3D plot of specimen profile and (b) 2D plot along line A–B.

Fig. 11
Fig. 11

Height variation along line A–B without the calibration coefficient.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ y = h / tan α + h / tan β ,
Δ y = h [ L 2 / H 2 L 1 ( 1 / H 1 1 / H 2 ) + y ( 1 / H 1 1 / H 2 ) ] 1 h / H 1 .
Δ = M Δ y = h ( a y + b ) ,
k = h / Δ = 1 / ( a y + b ) .
C ( y j ) = a 0 + a 1 y j + a 2 y j 2 .
k = 1 / k = a y + b .
h = k Δ = Δ / k .
c 2 / c 1 = ( 1 + err ) / ( 1 err )
c 2 / c 1 = 1 + ( 1 H 2 / H 1 ) L 1 / L 2 .
c 2 / c 1 = 1 + d ( H 1 + H 2 f / H 1 H 2 f ) / L 2

Metrics