Abstract

Optimal recording wavelength for maximum diffraction efficiency of thermal fixing in LiNbO3:Fe crystal is investigated. Holographic gratings are recorded using three typical recording wavelengths including 488, 514, and 633nm. Optimal switching from recording to thermal fixing is taken into consideration. The fixed holograms are developed by an original recording setup. Diffraction efficiencies of recording and thermal fixing are measured by a two-wave coupling technique. The theoretical and experimental results are analyzed and compared. With a blue beam, the nonvolatile hologram with maximum fixing efficiency is achieved. This work can obtain high persistent diffraction of the nonvolatile holographic storage in LiNbO3:Fe crystals.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
    [CrossRef]
  2. E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
    [CrossRef]
  3. C. Dai, L. Liu, D. Liu, and Y. Zhou, “Refractive-index change and sensitivity improvement in holographic recording in LiNbO3:Ce:Cu crystals with green light,” Chin. Opt. Lett. 3, 507–509 (2005).
  4. J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  5. D. L. Staebler and J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
    [CrossRef]
  6. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996).
    [CrossRef]
  7. B. Liu, L. Liu, and L. Xu, “Characteristics of recording and thermal fixing in lithium niobate,” Appl. Opt. 37, 2170–2176 (1998).
    [CrossRef]
  8. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
    [CrossRef]
  9. S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
    [CrossRef]
  10. A. Méndez and L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59(1998).
    [CrossRef]
  11. D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788–794 (1974).
    [CrossRef] [PubMed]
  12. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–517 (1989).
    [CrossRef]
  13. C. Gu and P. Yeh, “Diffraction properties of fixed gratings in photorefractive media,” J. Opt. Soc. Am. B 7, 2339–2346 (1990).
    [CrossRef]
  14. N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438–440(1976).
  15. N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  16. M. Aguilar, M. Carrascosa, and F. Agulló-López, “Optimization of selective erasure in photorefractive memories,” J. Opt. Soc. Am. B 14, 110–115 (1997).
    [CrossRef]
  17. R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354(1978).
    [CrossRef]
  18. R. Orlowski and E. Krätzig, “Holographic investigation of charge transport in electro-optic crystals,” Ferroelectrics 26, 831–834 (1980).
    [CrossRef]
  19. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D. 36, R1–R16 (2003).
    [CrossRef]
  20. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
    [CrossRef]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  22. L. Ren, L. Liu, D. Liu, J. Zu, and Z. Luan, “Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram,” Opt. Lett. 29, 186–188 (2004).
    [CrossRef] [PubMed]
  23. I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428–S431 (2003).
    [CrossRef]
  24. D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
    [CrossRef]
  25. J. Otten, A. Ozols, M. Reinfelde, and K. H. Ringhofer, “Self-enhancement in lithium niobate,” Opt. Commun. 72, 175–179(1989).
    [CrossRef]
  26. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
    [CrossRef]
  27. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005), pp. 35–48.
  28. M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
    [CrossRef]
  29. S. Friess and B. Bauschulte, “Wavelength dependence of the electrooptic coefficients in LiNbO3:Fe,” Physica Status Solidi. A 125, 369–374 (1991).
    [CrossRef]

2005 (2)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

C. Dai, L. Liu, D. Liu, and Y. Zhou, “Refractive-index change and sensitivity improvement in holographic recording in LiNbO3:Ce:Cu crystals with green light,” Chin. Opt. Lett. 3, 507–509 (2005).

2004 (2)

L. Ren, L. Liu, D. Liu, J. Zu, and Z. Luan, “Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram,” Opt. Lett. 29, 186–188 (2004).
[CrossRef] [PubMed]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

2003 (3)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D. 36, R1–R16 (2003).
[CrossRef]

I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428–S431 (2003).
[CrossRef]

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[CrossRef]

2000 (2)

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
[CrossRef]

1998 (3)

B. Liu, L. Liu, and L. Xu, “Characteristics of recording and thermal fixing in lithium niobate,” Appl. Opt. 37, 2170–2176 (1998).
[CrossRef]

S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

A. Méndez and L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59(1998).
[CrossRef]

1997 (2)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

M. Aguilar, M. Carrascosa, and F. Agulló-López, “Optimization of selective erasure in photorefractive memories,” J. Opt. Soc. Am. B 14, 110–115 (1997).
[CrossRef]

1996 (1)

1991 (1)

S. Friess and B. Bauschulte, “Wavelength dependence of the electrooptic coefficients in LiNbO3:Fe,” Physica Status Solidi. A 125, 369–374 (1991).
[CrossRef]

1990 (1)

1989 (2)

J. Otten, A. Ozols, M. Reinfelde, and K. H. Ringhofer, “Self-enhancement in lithium niobate,” Opt. Commun. 72, 175–179(1989).
[CrossRef]

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–517 (1989).
[CrossRef]

1980 (1)

R. Orlowski and E. Krätzig, “Holographic investigation of charge transport in electro-optic crystals,” Ferroelectrics 26, 831–834 (1980).
[CrossRef]

1979 (1)

N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1978 (1)

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354(1978).
[CrossRef]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

1976 (1)

N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438–440(1976).

1974 (1)

1972 (1)

D. L. Staebler and J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

1971 (1)

J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Aguilar, M.

Agulló-López, F.

Amodei, J.

J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Amodei, J. J.

D. L. Staebler and J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

Arizmendi, L.

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
[CrossRef]

A. Méndez and L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59(1998).
[CrossRef]

Bauschulte, B.

S. Friess and B. Bauschulte, “Wavelength dependence of the electrooptic coefficients in LiNbO3:Fe,” Physica Status Solidi. A 125, 369–374 (1991).
[CrossRef]

Beer, S.

S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

Breer, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Buse, K.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[CrossRef]

S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Carrascosa, M.

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
[CrossRef]

M. Aguilar, M. Carrascosa, and F. Agulló-López, “Optimization of selective erasure in photorefractive memories,” J. Opt. Soc. Am. B 14, 110–115 (1997).
[CrossRef]

Dai, C.

de Oliveira, I.

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428–S431 (2003).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Frejlich, J.

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428–S431 (2003).
[CrossRef]

Friess, S.

S. Friess and B. Bauschulte, “Wavelength dependence of the electrooptic coefficients in LiNbO3:Fe,” Physica Status Solidi. A 125, 369–374 (1991).
[CrossRef]

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Gu, C.

Hartwig, U.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[CrossRef]

Hukriede, J.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D. 36, R1–R16 (2003).
[CrossRef]

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kip, D.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D. 36, R1–R16 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Krätzig, E.

S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic investigation of charge transport in electro-optic crystals,” Ferroelectrics 26, 831–834 (1980).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354(1978).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kukhtarev, N. K.

N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438–440(1976).

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Limeres, J.

Liu, B.

Liu, D.

Liu, L.

Liu, Y.

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Luan, Z.

Luennemann, M.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[CrossRef]

Markov, V. B.

N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Méndez, A.

A. Méndez and L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59(1998).
[CrossRef]

Miguel, E. M.

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005), pp. 35–48.

Odulov, S. G.

N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Orlov, S. S.

Orlowski, R.

R. Orlowski and E. Krätzig, “Holographic investigation of charge transport in electro-optic crystals,” Ferroelectrics 26, 831–834 (1980).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354(1978).
[CrossRef]

Otten, J.

J. Otten, A. Ozols, M. Reinfelde, and K. H. Ringhofer, “Self-enhancement in lithium niobate,” Opt. Commun. 72, 175–179(1989).
[CrossRef]

Ozols, A.

J. Otten, A. Ozols, M. Reinfelde, and K. H. Ringhofer, “Self-enhancement in lithium niobate,” Opt. Commun. 72, 175–179(1989).
[CrossRef]

Panotopoulos, G.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[CrossRef]

Peithmann, K.

S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Phillips, W.

Rakuljic, G. A.

Raüber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Reinfelde, M.

J. Otten, A. Ozols, M. Reinfelde, and K. H. Ringhofer, “Self-enhancement in lithium niobate,” Opt. Commun. 72, 175–179(1989).
[CrossRef]

Ren, L.

Ringhofer, K. H.

J. Otten, A. Ozols, M. Reinfelde, and K. H. Ringhofer, “Self-enhancement in lithium niobate,” Opt. Commun. 72, 175–179(1989).
[CrossRef]

Runde, D.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D. 36, R1–R16 (2003).
[CrossRef]

Soskin, M. S.

N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Staebler, D.

J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Staebler, D. L.

D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788–794 (1974).
[CrossRef] [PubMed]

D. L. Staebler and J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

Vinetskii, V. L.

N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Vogt, H.

S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

Xu, L.

Yariv, A.

Yeh, P.

Zhou, C.

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Zhou, Y.

Zu, J.

Appl. Opt. (2)

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Appl. Phys. B (1)

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Chin. Opt. Lett. (1)

Ferroelectrics (3)

N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic investigation of charge transport in electro-optic crystals,” Ferroelectrics 26, 831–834 (1980).
[CrossRef]

D. L. Staebler and J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–517 (1989).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428–S431 (2003).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. D. (1)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D. 36, R1–R16 (2003).
[CrossRef]

Opt. Commun. (3)

J. Otten, A. Ozols, M. Reinfelde, and K. H. Ringhofer, “Self-enhancement in lithium niobate,” Opt. Commun. 72, 175–179(1989).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

A. Méndez and L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59(1998).
[CrossRef]

Phys. Rev. B (1)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Physica Status Solidi. A (1)

S. Friess and B. Bauschulte, “Wavelength dependence of the electrooptic coefficients in LiNbO3:Fe,” Physica Status Solidi. A 125, 369–374 (1991).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

Solid State Commun. (1)

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354(1978).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438–440(1976).

Other (1)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005), pp. 35–48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation of time evolution of diffraction efficiency for three recording wavelengths from recording to fixing step.

Fig. 2
Fig. 2

Schematic diagram of experimental setup. PBS, polarizing beam splitter; M, mirror; S, signal beam; R, reference beam; D, detector; PD, power detector.

Fig. 3
Fig. 3

Experimental time evolution of diffraction efficiency during holographic recording with coherent beams from a He Ne 633 nm laser.

Fig. 4
Fig. 4

Experimental result of time evolution of diffraction efficiency for switching times from recording to fixing step, which were recorded by the two wave interfering of a 633 nm beam.

Fig. 5
Fig. 5

Experimental result of time evolution of diffraction efficiency for switching times from recording to fixing step, which were recorded by interference of a 514 nm beam.

Fig. 6
Fig. 6

Experimental result of time evolution of diffraction efficiency for switching times from recording to fixing step, which were recorded by interference of a 488 nm beam.

Tables (1)

Tables Icon

Table 1 Parameters Chosen for Numerical Calculation

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( r , t ) = A 1 ( z ) cos ( ω t k 1 · r ) e ^ 1 ,
E 2 ( r , t ) = A 2 ( z ) cos ( ω t k 2 · r ) e ^ 2 ,
E opt ( r , t ) = 1 2 [ A 1 ( z ) e ^ 1 exp ( i k 1 · r ) + A 2 ( z ) e ^ 2 exp ( i k 2 · r ) ] exp ( i ω t ) + c . c .
I ( x ) = I 0 + I 1 exp ( i K · x ) + c . c . ,
I 0 = I 2 + I 1 = ε 0 n 0 c 2 ( | A 2 | 2 + | A 1 | 2 ) , I 1 = ε 0 n 0 c 2 ( A 2 A 1 * ) e ^ 2 · e ^ 1 * , K = k 2 k 1 .
d n d t = d N D + d t 1 e d j d x , d N D + d t = ( s ph I + s T ) ( N D N D + ) γ n N D + , j = σ E e D d n d x + k G s ph ( N D N D + ) , ε ε 0 d E d x = e ( n + N A N D + ) ,
E sc ( t R ) = m E eff ( 1 e t R / τ sc ) = m E ph + i E D 1 + E D E q i E ph E q N D + N D ( 1 e t R / τ sc ) .
E ph = k G α I σ , E D = k B T K e , E q = e ( N D ) eff ε ε 0 K ,
E h = E sc ( t R ) = m E eff ( 1 e t R / τ sc ) .
Recording:     Δ n ( t ) = Δ n s ( 1 exp ( t τ rec ) ) .
Erasure:       Δ n ( t ) = Δ n e exp ( t τ era ) .
η ( t , y ) = sin 2 ( π λ cos θ 0 y Δ n ( t , y ) d y ) ,
Δ n = 1 2 n eff 3 γ c | E sc | .

Metrics