Abstract

The Hyperspectral Imager for the Coastal Ocean (HICO) is the first spaceborne hyperspectral sensor designed specifically for the coastal ocean and estuarial, riverine, or other shallow-water areas. The HICO generates hyperspectral images, primarily over the 400900nm spectral range, with a ground sample distance of 90m (at nadir) and a high signal-to-noise ratio. The HICO is now operating on the International Space Station (ISS). Its cross-track and along-track fields of view are 42km (at nadir) and 192km, respectively, for a total scene area of 8000km2. The HICO is an innovative prototype sensor that builds on extensive experience with airborne sensors and makes extensive use of commercial off-the-shelf components to build a space sensor at a small fraction of the usual cost and time. Here we describe the instrument’s design and characterization and present early images from the ISS.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10, 210–221 (2002).
    [PubMed]
  2. C. O. Davis, K. L. Carder, B.-C. Gao, Z. P. Lee, and W. P. Bissett, “The development of imaging spectrometry of the coastal ocean,” in Proceedings of the IEEE Conference on International Geoscience and Remote Sensing Symposium (IEEE, 2006), Vol.  4, pp. 1982–1985.
    [CrossRef]
  3. C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE 6680, 66800P (2007).
    [CrossRef]
  4. Z. P. Lee and K. L. Carder, “Effects of spectral-band number on retrievals of water column and bottom properties from ocean-color data,” Appl. Opt. 41, 2191–2201 (2002).
    [CrossRef] [PubMed]
  5. S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
    [CrossRef]
  6. A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
    [CrossRef]
  7. R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
    [CrossRef]
  8. D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.
  9. D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
    [CrossRef]
  10. M. Corson, R. L. Lucke, and C. O. Davis, “The Hyperspectral Imager for the Coastal Ocean (HICO) and environmental characterization of the coastal zone from the International Space Station,” in Optical Remote Sensing of the Environment, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMA4.
  11. M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
    [CrossRef]
  12. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39, 2210–2220(2000).
    [CrossRef]
  13. R.-R. Li, R. Lucke, M. Corson, D. Korwan, and B.-C. Gao, “Correction of second order light for the HICO™ sensor on board the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 2303–2306.
    [CrossRef]
  14. H. R. Gordon, T. Du, and T. Zhang, “Atmospheric correction of ocean color sensors: analysis of the effects of residual instrument polarization sensitivity,” Appl. Opt. 36, 6938–6948(1997).
    [CrossRef]
  15. G. Meister, E. J. Kwiatkowska, B. A. Franz, F. S. Patt, G. C. Feldman, C. R. McClain, “Moderate resolution imaging spectrometer ocean color polarization correction,” Appl. Opt. 44, 5524–5535 (2005).
    [CrossRef] [PubMed]
  16. ZEMAX Development Corporation, Bellevue, Washington 98004, USA.
  17. http://www.spaceref.com/news/viewsr.rss.html?pid=35180.
  18. http://news.bbc.co.uk/2/hi/science/nature/8141256.stm.
  19. B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
    [CrossRef]
  20. R. A. Barnes, R. E. Eplee, F. S. Patt, and C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
    [CrossRef]

2009

S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
[CrossRef]

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

2007

C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE 6680, 66800P (2007).
[CrossRef]

2005

2004

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

2002

2000

1999

1997

Barnes, R. A.

Bishop, R. L.

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

Bissett, W. P.

C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE 6680, 66800P (2007).
[CrossRef]

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10, 210–221 (2002).
[PubMed]

C. O. Davis, K. L. Carder, B.-C. Gao, Z. P. Lee, and W. P. Bissett, “The development of imaging spectrometry of the coastal ocean,” in Proceedings of the IEEE Conference on International Geoscience and Remote Sensing Symposium (IEEE, 2006), Vol.  4, pp. 1982–1985.
[CrossRef]

Bowles, J.

Bowles, J. H.

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

Budzien, S. A.

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
[CrossRef]

Butcher, S. D.

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

Carder, K. L.

Z. P. Lee and K. L. Carder, “Effects of spectral-band number on retrievals of water column and bottom properties from ocean-color data,” Appl. Opt. 41, 2191–2201 (2002).
[CrossRef] [PubMed]

C. O. Davis, K. L. Carder, B.-C. Gao, Z. P. Lee, and W. P. Bissett, “The development of imaging spectrometry of the coastal ocean,” in Proceedings of the IEEE Conference on International Geoscience and Remote Sensing Symposium (IEEE, 2006), Vol.  4, pp. 1982–1985.
[CrossRef]

Chen, D.

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

Chen, D. T.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

Chen, W.

Chrien, T. G.

Christensen, A. B.

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
[CrossRef]

Corson, M.

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

M. Corson, R. L. Lucke, and C. O. Davis, “The Hyperspectral Imager for the Coastal Ocean (HICO) and environmental characterization of the coastal zone from the International Space Station,” in Optical Remote Sensing of the Environment, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMA4.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

R.-R. Li, R. Lucke, M. Corson, D. Korwan, and B.-C. Gao, “Correction of second order light for the HICO™ sensor on board the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 2303–2306.
[CrossRef]

Corson, M. R.

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

Davis, C. O.

C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE 6680, 66800P (2007).
[CrossRef]

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10, 210–221 (2002).
[PubMed]

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

M. Corson, R. L. Lucke, and C. O. Davis, “The Hyperspectral Imager for the Coastal Ocean (HICO) and environmental characterization of the coastal zone from the International Space Station,” in Optical Remote Sensing of the Environment, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMA4.

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

C. O. Davis, K. L. Carder, B.-C. Gao, Z. P. Lee, and W. P. Bissett, “The development of imaging spectrometry of the coastal ocean,” in Proceedings of the IEEE Conference on International Geoscience and Remote Sensing Symposium (IEEE, 2006), Vol.  4, pp. 1982–1985.
[CrossRef]

Downes, T. V.

Du, T.

Eplee, R. E.

Feldman, G. C.

Fisher, J.

Franz, B. A.

Gao, B. G.

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

Gao, B.-C.

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

C. O. Davis, K. L. Carder, B.-C. Gao, Z. P. Lee, and W. P. Bissett, “The development of imaging spectrometry of the coastal ocean,” in Proceedings of the IEEE Conference on International Geoscience and Remote Sensing Symposium (IEEE, 2006), Vol.  4, pp. 1982–1985.
[CrossRef]

R.-R. Li, R. Lucke, M. Corson, D. Korwan, and B.-C. Gao, “Correction of second order light for the HICO™ sensor on board the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 2303–2306.
[CrossRef]

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

Gordon, H. R.

Green, R. O.

Hecht, J. H.

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

Kavanaugh, M.

C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE 6680, 66800P (2007).
[CrossRef]

Kohler, D.

C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE 6680, 66800P (2007).
[CrossRef]

Korwan, D.

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10, 210–221 (2002).
[PubMed]

R.-R. Li, R. Lucke, M. Corson, D. Korwan, and B.-C. Gao, “Correction of second order light for the HICO™ sensor on board the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 2303–2306.
[CrossRef]

Korwan, D. R.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

Kwiatkowska, E. J.

Leathers, R. A.

Lee, Z. P.

Z. P. Lee and K. L. Carder, “Effects of spectral-band number on retrievals of water column and bottom properties from ocean-color data,” Appl. Opt. 41, 2191–2201 (2002).
[CrossRef] [PubMed]

C. O. Davis, K. L. Carder, B.-C. Gao, Z. P. Lee, and W. P. Bissett, “The development of imaging spectrometry of the coastal ocean,” in Proceedings of the IEEE Conference on International Geoscience and Remote Sensing Symposium (IEEE, 2006), Vol.  4, pp. 1982–1985.
[CrossRef]

Letelier, R.

C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE 6680, 66800P (2007).
[CrossRef]

Li, R. R.

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

Li, R.-R.

R.-R. Li, R. Lucke, M. Corson, D. Korwan, and B.-C. Gao, “Correction of second order light for the HICO™ sensor on board the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 2303–2306.
[CrossRef]

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

Lucke, R.

R.-R. Li, R. Lucke, M. Corson, D. Korwan, and B.-C. Gao, “Correction of second order light for the HICO™ sensor on board the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 2303–2306.
[CrossRef]

Lucke, R. L.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

M. Corson, R. L. Lucke, and C. O. Davis, “The Hyperspectral Imager for the Coastal Ocean (HICO) and environmental characterization of the coastal zone from the International Space Station,” in Optical Remote Sensing of the Environment, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMA4.

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

McClain, C. R.

McGlothlin, N. R.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

Meister, G.

Miller, W. D.

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

Montes, M. J.

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

Mouroulis, P.

Patt, F. S.

Reisse, R. A.

Rhea, W. J.

Snyder, W. A.

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10, 210–221 (2002).
[PubMed]

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

Stephan, A. W.

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
[CrossRef]

Straus, P. R.

S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

Van Epps, Z.

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

Wood, D. L.

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

Zhang, T.

Appl. Opt.

Opt. Express

Proc. SPIE

C. O. Davis, M. Kavanaugh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” Proc. SPIE 6680, 66800P (2007).
[CrossRef]

S. A. Budzien, R. L. Bishop, A. W. Stephan, P. R. Straus, A. B. Christensen, and J. H. Hecht, “The remote atmospheric and ionospheric detection system on the ISS: mission overview,” Proc. SPIE 7438, 74380X (2009).
[CrossRef]

A. W. Stephan, S. A. Budzien, R. L. Bishop, P. R. Straus, A. B. Christensen, J. H. Hecht, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the extreme to the near ultraviolet,” Proc. SPIE 7438, 74380Y (2009).
[CrossRef]

R. L. Bishop, S. A. Budzien, J. H. Hecht, A. W. Stephan, A. B. Christensen, P. R. Straus, and Z. Van Epps, “The remote atmospheric and ionospheric detection system on the ISS: sensor performance and space weather applications from the visible to the near infrared,” Proc. SPIE 7438, 74380Z (2009).
[CrossRef]

Remote Sens. Environ.

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

Other

D. R. Korwan, R. L. Lucke, M. Corson, J. H. Bowles, B. G. Gao, R. R. Li, M. J. Montes, W. A. Snyder, N. R. McGlothlin, S. D. Butcher, D. L. Wood, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO)—design and early results,” in IGRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 14–16.

D. R. Korwan, R. L. Lucke, N. R. McGlothlin, S. D. Butcher, D. L. Wood, J. H. Bowles, M. Corson, W. A. Snyder, C. O. Davis, and D. T. Chen, “Laboratory characterization of the Hyperspectral Imager for the Coastal Ocean (HICO),” in Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IEEE, 2009), Vol.  2, pp. II-69–II-72.
[CrossRef]

M. Corson, R. L. Lucke, and C. O. Davis, “The Hyperspectral Imager for the Coastal Ocean (HICO) and environmental characterization of the coastal zone from the International Space Station,” in Optical Remote Sensing of the Environment, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMA4.

M. R. Corson, R. L. Lucke, J. H. Bowles, D. Chen, B.-C. Gao, D. R. Korwan, R.-R. Li, W. A. Snyder, C. O. Davis, and W. D. Miller, “The Hyperspectral Imager for the Coastal Ocean (HICO) environmental littoral imaging from the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 3752–3755.
[CrossRef]

C. O. Davis, K. L. Carder, B.-C. Gao, Z. P. Lee, and W. P. Bissett, “The development of imaging spectrometry of the coastal ocean,” in Proceedings of the IEEE Conference on International Geoscience and Remote Sensing Symposium (IEEE, 2006), Vol.  4, pp. 1982–1985.
[CrossRef]

R.-R. Li, R. Lucke, M. Corson, D. Korwan, and B.-C. Gao, “Correction of second order light for the HICO™ sensor on board the International Space Station,” in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2010), pp. 2303–2306.
[CrossRef]

ZEMAX Development Corporation, Bellevue, Washington 98004, USA.

http://www.spaceref.com/news/viewsr.rss.html?pid=35180.

http://news.bbc.co.uk/2/hi/science/nature/8141256.stm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

The HICO shown before installation of thermal blankets and integration into the HREP. The Newport rotator is on the left. The high black box at the center is hermetically sealed and contains the Rolera-MGi camera. The shorter black box just beyond the camera housing is the spectrometer, to which the lens, just to the right of the center, is attached. The sensor is in stow position, with the lens looking into a labyrinth light seal, which is supported on the black longitudinal cross bar. The sensor is bolted to its nonflight mounting plate, which reproduces the slot through which it will view the Earth. The ruler is marked in inches. The normal flight direction is from right to left, parallel to the rotation axis.

Fig. 2
Fig. 2

Optical configuration of the HICO instrument. The grating is ruled on the convex Offner secondary and spreads the image of the slit over blue to red wavelengths in the focal plane. The long axis of the slit is perpendicular to the page. The window between the spectrometer and the camera keeps the N 2 gas sealed in the camera housing.

Fig. 3
Fig. 3

FWHM of the PSF in the spatial direction. Below about 390 nm , the light source was too weak to give reliable results. The oscillations at the long-wavelength end of the curves is caused by etaloning within the thinned, back-illuminated CCD.

Fig. 4
Fig. 4

Keystone and tilt. The deviations from a straight horizontal line at zero shift are due primarily to residual chromatic aberrations in the lens. Below about 390 nm , the light source was too weak to give reliable results.

Fig. 5
Fig. 5

FWHM of the PSF in the spectral direction.

Fig. 6
Fig. 6

Spectral tilt and (nearly nonexistent) smile.

Fig. 7
Fig. 7

Polarization sensitivity of the HICO. The sensor is most sensitive to blue light polarized parallel to the slit and to red light polarized perpendicular to the slit.

Fig. 8
Fig. 8

Cross-track IFOV (and FOV; see text) ground-footprint size multiplier as a function of the off-track distance of the observed ground point for altitudes that will cover the range of ISS altitudes for the HREP mission. Tick marks are placed on the curves every 5 ° of the off-nadir pointing angle. The HICO can achieve off-nadir angles of 45 ° to starboard and 30 ° to port.

Fig. 9
Fig. 9

The absolute value of the angle that the long axis of a HICO scene makes with respect to due east. The angle is positive when the ISS is moving north and negative when it is moving south. The value of the angle is exact for a nadir view and errs by at most (depending on latitude) about 1.6 ° for the extreme case of a 45 ° off-nadir observation.

Fig. 10
Fig. 10

HICO image of the South China Sea, near Hong Kong, China, taken on 2 October 2009. The ISS is moving north, and the orientation is from the SW at the bottom to the NE at the top.

Fig. 11
Fig. 11

HICO image of Andros Island in the Bahamas, 22 October 2009, from the NW at the top to the SE at the bottom. Seafloor structures are visible in shallow water.

Fig. 12
Fig. 12

Representative spectra of points D, S1, S2, and S3 from Fig. 11.

Fig. 13
Fig. 13

Representative SNR plots for HICO data from various water depths. D, S1, S2, and S3 refer to locations shown in Fig. 11. The normal 5.7 nm spectral samples have been binned by two to give 11.4 nm samples.

Fig. 14
Fig. 14

Data from a typical pixel are shown in black with the fitted curves from Eq. (A1) in white (see text). The first and last sets of 200 frames are dark data; the central 2000 frames are from the scene, also dark in this case. There is a 5 min break in data collection after the 200th frame and after the 2200th frame. Different datasets can have substantially different dark counts, as shown in Fig. 15.

Fig. 15
Fig. 15

Same as Fig. 14, with a different dataset and different ambient temperature.

Fig. 16
Fig. 16

Typical dark scene test data from one pixel with dark counts subtracted.

Fig. 17
Fig. 17

Histogram of averages of corrected data for one dataset. The average of the pixel averages (the centroid of the histogram) is 0.005 .

Tables (2)

Tables Icon

Table 1 HICO Parameters

Tables Icon

Table 2 Wavelengths of Laboratory Calibration Spectral Lines and Pixel Numbers

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

θ ( p ) = 3.487 p 256.5 255.5 0.035 ( p 256.5 255.5 ) 3 deg , 1 p 512 ,
IFOV = d θ ( p ) d p Δ p = 3.487 255.5 0.105 255.5 ( p 256.5 255.5 ) 2 = 0.01365 0.00041 ( p 256.5 255.5 ) 2 deg .
FL = 0.016 mm tan ( 0.01365 ° ) = 67.16 mm .
λ c = 348.8 + 1.9095 p 1 p 384 ,
λ c = 346.9 + 5.728 b 1 b 128 ,
D p k ( t ) = A p k + B p ln ( 1 + t t s ) ,
f ave = t s t m 0 t m ln ( 1 + t t s ) d t t s = t s t m [ ( 1 + t t s ) ln ( 1 + t t s ) ( 1 + t t s ) | 0 t m = t s t m [ ( 1 + t m t s ) ln ( 1 + t m t s ) ( 1 + t m t s ) + 1 ] = ( 1 + t s t m ) ln ( 1 + t m t s ) 1 = 1.125 ,
S 1 = 1 197 n = 3 199 M ( n ) and S 3 = 1 197 n = 2203 2399 M ( n ) .
S ave = 1 2 ( S 1 + S 3 ) .
B p = 11.4 + 0.9 × S ave 221 285 221 .
Ave [ D p 1 , 3 ( t ) , 0 t 197 ] = A p 1 , 3 + B p f ave = A p 1 , 3 + 1.125 B p .
A p 1 , 3 = S 1 , 3 1.125 B p .
A p 2 = 1 2 ( A p 1 + A p 3 ) + 1.2 .
M new ( 203 n 2199 ) = M old [ A p 2 + B p ln ( 1 + n 203 t s ) ] .
M m = R m T 1 + n = 1 n m N R n δ T = R m ( T 1 δ T ) + δ T n = 1 N R n .
C m = ( T 1 + T 2 ) R m .
M m = C m T 1 + T 2 ( T 1 δ T ) + δ T T 1 + T 2 n = 1 N C n ,
m = 1 N M m = T 1 δ T T 1 + T 2 m = 1 N C m + N δ T T 1 + T 2 n = 1 N C n = T 1 + ( N 1 ) δ T T 1 + T 2 m = 1 N C m = m = 1 N C m ,
C m = T 1 + T 2 T 1 δ T M m δ T T 1 δ T n = 1 N C n = M m + T 2 + δ T T 1 δ T ( M m 1 N n = 1 N C n ) ,
C m = M m + T 2 + δ T T 1 δ T ( M m 1 N n = 1 N M n ) .
C m = M m + T 2 + δ T T 1 δ T ( M m 3 512 n = 1 171 M n ) ,

Metrics