Abstract

Optical constants of thin metal films are strongly dependent on deposition conditions, growth mode, and thickness. We propose a universal characterization approach that allows reliable determination of thin metal film optical constants as functions of wavelength and thickness. We apply this approach to determination of refractive index dispersion of silver island films embedded between silica layers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053–3060 (2002).
    [CrossRef] [PubMed]
  2. N. Kaiser, “Optical coatings road-map,” presented at the International Workshop on Optical Coatings In Celebration of Dr. J. A. Dobrowolski’s 50th Year at NRC, Ottawa, Canada, 11 May 2006.
  3. P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vakuum in Forschung und Praxis 18, 53–56 (2006).
    [CrossRef]
  4. A. Stepanov, “Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness,” Opt. Spectrosc. 91, 815–819 (2001).
    [CrossRef]
  5. A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin al and ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
    [CrossRef] [PubMed]
  6. O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
    [CrossRef]
  7. O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
    [CrossRef]
  8. A. Leitner, Z. Zhao, H. Brunner, F. Aussenegg, and A. Wokaun, “Optical properties of a metal island film close to a smooth metal surface,” Appl. Opt. 32, 102–110 (1993).
    [CrossRef] [PubMed]
  9. I. Hooper and J. Sambles, “Some considerations on the transmissivity of thin metal films,” Opt. Express 16, 17249–17257(2008).
    [CrossRef] [PubMed]
  10. Y. Jourlin, S. Tonchev, A. Tishchenko, C. Pedri, C. Veillas, O. Parriaux, A. Last, and Y. Lacroute, “Spatially and polarization resolved plasmon mediated transmission through continuous metal films,” Opt. Express 17, 12155–12166 (2009).
    [CrossRef] [PubMed]
  11. T. Iwata and G. Komoda, “Measurements of complex refractive indices of metals at several wavelengths by frustrated total internal reflection due to surface plasmon resonance,” Appl. Opt. 47, 2386–2391 (2008).
    [CrossRef] [PubMed]
  12. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
    [CrossRef]
  13. A. Nabok, A. Tsargorodskaya, and Suryajaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
    [CrossRef]
  14. A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
    [CrossRef]
  15. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
    [CrossRef] [PubMed]
  16. H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with high luminosity,” in Optical Interference Coatings (Optical Society of America, 2010), paper TuD8.
  17. J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2007 Topical Meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 47, C231 –C245 (2008).
    [CrossRef] [PubMed]
  18. J. A. Dobrowolski, S. Browning, M. R. Jacobson, and M. Nadal, “2004 Optical Society of America’s Topical Meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 45, 1303–1311 (2006).
    [CrossRef] [PubMed]
  19. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  20. N&K database, http://www.sopra-sa.com/.
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  22. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
    [CrossRef] [PubMed]
  23. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  24. J. A. Dobrowolski, L. Li, and R. A. Kemp, “Metal/dielectric transmission interference filters with low reflectance. 1. Design,” Appl. Opt. 34, 5673–5683 (1995).
    [CrossRef] [PubMed]
  25. P. Ma, F. Lin, and G. J. Dobrowolski, “Design and manufacture of metal-dielectric long wavelength cut-off filters,” in Optical Interference Coatings (Optical Society of America, 2010), paper MA9.
  26. A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.
  27. A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.
  28. A. B. Djurišić, T. Fritz, and K. Leo, “Determination of optical constants of thin absorbing films from normal incidence reflectance and transmittance measurements,” Opt. Commun. 166, 35–42 (1999).
    [CrossRef]
  29. M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
    [CrossRef]
  30. J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, and F. Peiro, “Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures,” Appl. Phys. Lett. 92, 163108 (2008).
    [CrossRef]
  31. V. Janicki, J. Sancho-Parramon, F. Peiro, and J. Arbiol, “Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98, 93–98, doi: 10.1007/s00340-009-3705-7 (2010).
    [CrossRef]
  32. A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems (Winston-Wiley, 1977).
  33. J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, and M. C. Ferrara, “Use of information on the manufacture of samples for the optical characterization of multilayers through a global optimization,” Appl. Opt. 42, 1325–1329(2003).
    [CrossRef] [PubMed]
  34. A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
    [CrossRef]
  35. W. Vargas, D. Azofeifa, N. Clark, and X. Márquez, “Collective response of silver islands on a dielectric substrate when normally illuminated with electromagnetic radiation,” J. Phys. D 41, 025309 (2008).
    [CrossRef]
  36. O. Stenzel, The Physics of Thin Film Optical Spectra(Springer-Verlag, 2005).
  37. A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
    [CrossRef]
  38. O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989(1995).
    [CrossRef]
  39. A. Tikhonravov and M. Trubetskov, “Optical characterization of thin films—basic concept,,” presented at the XIV OptiLayer Workshop in Europe, Hannover, 22–24 March 2010, and the VII OptiLayer Workshop in the USA, Santa Clara, 16–18 November 2009.
  40. A. Tikhonravov and M. Trubetskov, “Thin film characterization using spectral ellipsometric data,” presented at the XIV OptiLayer Workshop in Europe, Hannover, 22–24 March 2010, and the VII OptiLayer Workshop in the USA, Santa Clara, 16–18 November 2009.
  41. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com.
  42. J. Sancho-Parramon, “Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects,” Nanotechnology 20, 235706 (2009).
    [CrossRef] [PubMed]
  43. R. R. Singer, A. Leitner, and F. R. Aussenegg, “Structure analysis and models for optical constants of discontinuous metallic silver films,” J. Opt. Soc. Am. B 12, 220–228 (1995).
    [CrossRef]
  44. R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
    [CrossRef]
  45. A. Forouhi and I. Bloomer, “Calculation of optical constants, n and k, in the interband region,” in Handbook of Optical Constants of Solids II, E.Palik, ed. (Academic, 1991), pp. 151–175.

2010 (4)

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

V. Janicki, J. Sancho-Parramon, F. Peiro, and J. Arbiol, “Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98, 93–98, doi: 10.1007/s00340-009-3705-7 (2010).
[CrossRef]

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. Jourlin, S. Tonchev, A. Tishchenko, C. Pedri, C. Veillas, O. Parriaux, A. Last, and Y. Lacroute, “Spatially and polarization resolved plasmon mediated transmission through continuous metal films,” Opt. Express 17, 12155–12166 (2009).
[CrossRef] [PubMed]

J. Sancho-Parramon, “Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects,” Nanotechnology 20, 235706 (2009).
[CrossRef] [PubMed]

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

2008 (6)

J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, and F. Peiro, “Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures,” Appl. Phys. Lett. 92, 163108 (2008).
[CrossRef]

W. Vargas, D. Azofeifa, N. Clark, and X. Márquez, “Collective response of silver islands on a dielectric substrate when normally illuminated with electromagnetic radiation,” J. Phys. D 41, 025309 (2008).
[CrossRef]

A. Nabok, A. Tsargorodskaya, and Suryajaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
[CrossRef]

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2007 Topical Meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 47, C231 –C245 (2008).
[CrossRef] [PubMed]

T. Iwata and G. Komoda, “Measurements of complex refractive indices of metals at several wavelengths by frustrated total internal reflection due to surface plasmon resonance,” Appl. Opt. 47, 2386–2391 (2008).
[CrossRef] [PubMed]

I. Hooper and J. Sambles, “Some considerations on the transmissivity of thin metal films,” Opt. Express 16, 17249–17257(2008).
[CrossRef] [PubMed]

2007 (2)

A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin al and ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
[CrossRef] [PubMed]

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

2006 (2)

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vakuum in Forschung und Praxis 18, 53–56 (2006).
[CrossRef]

J. A. Dobrowolski, S. Browning, M. R. Jacobson, and M. Nadal, “2004 Optical Society of America’s Topical Meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 45, 1303–1311 (2006).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

2001 (1)

A. Stepanov, “Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness,” Opt. Spectrosc. 91, 815–819 (2001).
[CrossRef]

1999 (2)

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

A. B. Djurišić, T. Fritz, and K. Leo, “Determination of optical constants of thin absorbing films from normal incidence reflectance and transmittance measurements,” Opt. Commun. 166, 35–42 (1999).
[CrossRef]

1998 (1)

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

1997 (1)

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

1996 (1)

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

1995 (3)

1993 (1)

1991 (1)

R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Amotchkina, T.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Arbiol, J.

V. Janicki, J. Sancho-Parramon, F. Peiro, and J. Arbiol, “Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98, 93–98, doi: 10.1007/s00340-009-3705-7 (2010).
[CrossRef]

J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, and F. Peiro, “Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures,” Appl. Phys. Lett. 92, 163108 (2008).
[CrossRef]

Arsenin, V. Y.

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems (Winston-Wiley, 1977).

Aussenegg, F.

Aussenegg, F. R.

Azofeifa, D.

W. Vargas, D. Azofeifa, N. Clark, and X. Márquez, “Collective response of silver islands on a dielectric substrate when normally illuminated with electromagnetic radiation,” J. Phys. D 41, 025309 (2008).
[CrossRef]

Barrera, R. G.

R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Bernstorff, S.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

Bloomer, I.

A. Forouhi and I. Bloomer, “Calculation of optical constants, n and k, in the interband region,” in Handbook of Optical Constants of Solids II, E.Palik, ed. (Academic, 1991), pp. 151–175.

Bosch, S.

Browning, S.

Brunner, H.

Chen, W.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Clark, N.

W. Vargas, D. Azofeifa, N. Clark, and X. Márquez, “Collective response of silver islands on a dielectric substrate when normally illuminated with electromagnetic radiation,” J. Phys. D 41, 025309 (2008).
[CrossRef]

de Vries, A. J.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

del Castillo-Mussot, M.

R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Djurišic, A. B.

A. B. Djurišić, T. Fritz, and K. Leo, “Determination of optical constants of thin absorbing films from normal incidence reflectance and transmittance measurements,” Opt. Commun. 166, 35–42 (1999).
[CrossRef]

Dobrowolski, G. J.

P. Ma, F. Lin, and G. J. Dobrowolski, “Design and manufacture of metal-dielectric long wavelength cut-off filters,” in Optical Interference Coatings (Optical Society of America, 2010), paper MA9.

Dobrowolski, J. A.

Dressel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

Drews, D.

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Dubcek, P.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

Ferrara, M. C.

Ferré-Borrull, J.

Forouhi, A.

A. Forouhi and I. Bloomer, “Calculation of optical constants, n and k, in the interband region,” in Handbook of Optical Constants of Solids II, E.Palik, ed. (Academic, 1991), pp. 151–175.

Fritz, T.

A. B. Djurišić, T. Fritz, and K. Leo, “Determination of optical constants of thin absorbing films from normal incidence reflectance and transmittance measurements,” Opt. Commun. 166, 35–42 (1999).
[CrossRef]

Gompf, B.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

Haase, A.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

Heger, P.

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vakuum in Forschung und Praxis 18, 53–56 (2006).
[CrossRef]

Hooper, I.

Hövel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

Hrdina, J.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Ishii, S.

Iwata, T.

Jacobson, M.

Jacobson, M. R.

Jakopic, G.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

Janicki, V.

V. Janicki, J. Sancho-Parramon, F. Peiro, and J. Arbiol, “Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98, 93–98, doi: 10.1007/s00340-009-3705-7 (2010).
[CrossRef]

J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, and F. Peiro, “Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures,” Appl. Phys. Lett. 92, 163108 (2008).
[CrossRef]

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with high luminosity,” in Optical Interference Coatings (Optical Society of America, 2010), paper TuD8.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jourlin, Y.

Kaiser, N.

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vakuum in Forschung und Praxis 18, 53–56 (2006).
[CrossRef]

N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053–3060 (2002).
[CrossRef] [PubMed]

N. Kaiser, “Optical coatings road-map,” presented at the International Workshop on Optical Coatings In Celebration of Dr. J. A. Dobrowolski’s 50th Year at NRC, Ottawa, Canada, 11 May 2006.

Kemp, R. A.

Kildishev, A. V.

Kluev, E.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Kokarev, M.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Kokarev, M. A.

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

Komoda, G.

Kooij, E. S.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Kozlov, I.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Kuittinen, M.

Lacroute, Y.

Last, A.

Lebedev, A.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

Lehmuskero, A.

Leitner, A.

Leo, K.

A. B. Djurišić, T. Fritz, and K. Leo, “Determination of optical constants of thin absorbing films from normal incidence reflectance and transmittance measurements,” Opt. Commun. 166, 35–42 (1999).
[CrossRef]

Leong, E. S. P.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Li, L.

Lin, F.

P. Ma, F. Lin, and G. J. Dobrowolski, “Design and manufacture of metal-dielectric long wavelength cut-off filters,” in Optical Interference Coatings (Optical Society of America, 2010), paper MA9.

Liu, H.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Loncaric, M.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with high luminosity,” in Optical Interference Coatings (Optical Society of America, 2010), paper TuD8.

Ma, P.

P. Ma, F. Lin, and G. J. Dobrowolski, “Design and manufacture of metal-dielectric long wavelength cut-off filters,” in Optical Interference Coatings (Optical Society of America, 2010), paper MA9.

Maier, S. A.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Márquez, X.

W. Vargas, D. Azofeifa, N. Clark, and X. Márquez, “Collective response of silver islands on a dielectric substrate when normally illuminated with electromagnetic radiation,” J. Phys. D 41, 025309 (2008).
[CrossRef]

Mewe, A. A.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Mochán, W. L.

R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Monsivais, G.

R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Nabok, A.

A. Nabok, A. Tsargorodskaya, and Suryajaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
[CrossRef]

Nadal, M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Parriaux, O.

Pavlovic, M.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

Pedri, C.

Peiro, F.

V. Janicki, J. Sancho-Parramon, F. Peiro, and J. Arbiol, “Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98, 93–98, doi: 10.1007/s00340-009-3705-7 (2010).
[CrossRef]

J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, and F. Peiro, “Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures,” Appl. Phys. Lett. 92, 163108 (2008).
[CrossRef]

Petrich, R.

O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989(1995).
[CrossRef]

Poelsema, B.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Prosovskiy, O.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Prosovskiy, O. F.

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

Quinten, M.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

Röder, M.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Sambles, J.

Sancho-Parramon, J.

V. Janicki, J. Sancho-Parramon, F. Peiro, and J. Arbiol, “Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98, 93–98, doi: 10.1007/s00340-009-3705-7 (2010).
[CrossRef]

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

J. Sancho-Parramon, “Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects,” Nanotechnology 20, 235706 (2009).
[CrossRef] [PubMed]

J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, and F. Peiro, “Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures,” Appl. Phys. Lett. 92, 163108 (2008).
[CrossRef]

J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, and M. C. Ferrara, “Use of information on the manufacture of samples for the optical characterization of multilayers through a global optimization,” Appl. Opt. 42, 1325–1329(2003).
[CrossRef] [PubMed]

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with high luminosity,” in Optical Interference Coatings (Optical Society of America, 2010), paper TuD8.

Schreiber, M.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

Shalaev, V. M.

Si, G.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Singer, R. R.

Sobota, J.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Stendal, A.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Stenzel, O.

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vakuum in Forschung und Praxis 18, 53–56 (2006).
[CrossRef]

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989(1995).
[CrossRef]

O. Stenzel, The Physics of Thin Film Optical Spectra(Springer-Verlag, 2005).

Stepanov, A.

A. Stepanov, “Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness,” Opt. Spectrosc. 91, 815–819 (2001).
[CrossRef]

Suryajaya,

A. Nabok, A. Tsargorodskaya, and Suryajaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
[CrossRef]

Teng, J.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Thoreson, M. D.

Tikhonov, A. N.

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems (Winston-Wiley, 1977).

Tikhonravov, A.

A. Tikhonravov and M. Trubetskov, “Thin film characterization using spectral ellipsometric data,” presented at the XIV OptiLayer Workshop in Europe, Hannover, 22–24 March 2010, and the VII OptiLayer Workshop in the USA, Santa Clara, 16–18 November 2009.

A. Tikhonravov and M. Trubetskov, “Optical characterization of thin films—basic concept,,” presented at the XIV OptiLayer Workshop in Europe, Hannover, 22–24 March 2010, and the VII OptiLayer Workshop in the USA, Santa Clara, 16–18 November 2009.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Tikhonravov, A. V.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com.

Tishchenko, A.

Tonchev, S.

Trubetskov, M.

A. Tikhonravov and M. Trubetskov, “Optical characterization of thin films—basic concept,,” presented at the XIV OptiLayer Workshop in Europe, Hannover, 22–24 March 2010, and the VII OptiLayer Workshop in the USA, Santa Clara, 16–18 November 2009.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

A. Tikhonravov and M. Trubetskov, “Thin film characterization using spectral ellipsometric data,” presented at the XIV OptiLayer Workshop in Europe, Hannover, 22–24 March 2010, and the VII OptiLayer Workshop in the USA, Santa Clara, 16–18 November 2009.

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com.

Tsargorodskaya, A.

A. Nabok, A. Tsargorodskaya, and Suryajaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
[CrossRef]

Turkovic, A.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

Vahimaa, P.

Vargas, W.

W. Vargas, D. Azofeifa, N. Clark, and X. Márquez, “Collective response of silver islands on a dielectric substrate when normally illuminated with electromagnetic radiation,” J. Phys. D 41, 025309 (2008).
[CrossRef]

Veillas, C.

Villaseor, P.

R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

von Borczyskowski, C.

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Wang, B.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Werninghaus, T.

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Wilbrandt, S.

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Wokaun, A.

Wormeester, H.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Yang, P.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Zahn, D.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Zhao, Z.

Zhupanov, V.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Zong, Y.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Zorc, H.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, and F. Peiro, “Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures,” Appl. Phys. Lett. 92, 163108 (2008).
[CrossRef]

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with high luminosity,” in Optical Interference Coatings (Optical Society of America, 2010), paper TuD8.

ACS Nano (1)

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[CrossRef] [PubMed]

Appl. Opt. (7)

Appl. Phys. B (1)

V. Janicki, J. Sancho-Parramon, F. Peiro, and J. Arbiol, “Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98, 93–98, doi: 10.1007/s00340-009-3705-7 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, and F. Peiro, “Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures,” Appl. Phys. Lett. 92, 163108 (2008).
[CrossRef]

J. Appl. Phys. (1)

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A Pure Appl. Opt. 1, 573–580 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (2)

O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989(1995).
[CrossRef]

W. Vargas, D. Azofeifa, N. Clark, and X. Márquez, “Collective response of silver islands on a dielectric substrate when normally illuminated with electromagnetic radiation,” J. Phys. D 41, 025309 (2008).
[CrossRef]

Nanotechnology (2)

O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

J. Sancho-Parramon, “Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects,” Nanotechnology 20, 235706 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. B. Djurišić, T. Fritz, and K. Leo, “Determination of optical constants of thin absorbing films from normal incidence reflectance and transmittance measurements,” Opt. Commun. 166, 35–42 (1999).
[CrossRef]

Opt. Express (4)

Opt. Spectrosc. (1)

A. Stepanov, “Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness,” Opt. Spectrosc. 91, 815–819 (2001).
[CrossRef]

Phys. Rev. B (3)

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Phys. Status Solidi C (1)

A. Nabok, A. Tsargorodskaya, and Suryajaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
[CrossRef]

Pure Appl. Opt. (1)

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Thin Solid Films (1)

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Vacuum (1)

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84, 188–192(2009).
[CrossRef]

Vakuum in Forschung und Praxis (1)

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vakuum in Forschung und Praxis 18, 53–56 (2006).
[CrossRef]

Other (14)

N. Kaiser, “Optical coatings road-map,” presented at the International Workshop on Optical Coatings In Celebration of Dr. J. A. Dobrowolski’s 50th Year at NRC, Ottawa, Canada, 11 May 2006.

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with high luminosity,” in Optical Interference Coatings (Optical Society of America, 2010), paper TuD8.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

N&K database, http://www.sopra-sa.com/.

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems (Winston-Wiley, 1977).

O. Stenzel, The Physics of Thin Film Optical Spectra(Springer-Verlag, 2005).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

P. Ma, F. Lin, and G. J. Dobrowolski, “Design and manufacture of metal-dielectric long wavelength cut-off filters,” in Optical Interference Coatings (Optical Society of America, 2010), paper MA9.

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

A. Forouhi and I. Bloomer, “Calculation of optical constants, n and k, in the interband region,” in Handbook of Optical Constants of Solids II, E.Palik, ed. (Academic, 1991), pp. 151–175.

A. Tikhonravov and M. Trubetskov, “Optical characterization of thin films—basic concept,,” presented at the XIV OptiLayer Workshop in Europe, Hannover, 22–24 March 2010, and the VII OptiLayer Workshop in the USA, Santa Clara, 16–18 November 2009.

A. Tikhonravov and M. Trubetskov, “Thin film characterization using spectral ellipsometric data,” presented at the XIV OptiLayer Workshop in Europe, Hannover, 22–24 March 2010, and the VII OptiLayer Workshop in the USA, Santa Clara, 16–18 November 2009.

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Modeling of MIF.

Fig. 2
Fig. 2

Fitting of measurement reflectance and transmittance data by theoretical spectral characteristics obtained in the course of two characterization attempts (see Subsection 3B for details).

Fig. 3
Fig. 3

Comparison of the refractive indices and extinction coefficients calculated in the course of the first (solid curves) and the second (dashed curves) characterization attempts (see Subsection 3B for details).

Fig. 4
Fig. 4

Comparison of reflectance and transmittance of model designs corresponding to different values of parameter c (see Subsection 3B for details).

Fig. 5
Fig. 5

Typical fittings of measurement ellipsometric data (crosses) by theoretical ellipsometric values of Ψ and Δ (solid curves). The data correspond to sample S3.

Fig. 6
Fig. 6

Wavelength dependencies of refractive indices and extinction coefficients of Ag - Si O 2 composite films. The labels S 1 , , S 8 indicate the corresponding samples.

Fig. 7
Fig. 7

Fitting of measurement spectral photometric data related to sample S3 by theoretical reflectance and transmittance calculated basing on n and k presented in Fig. 6 and δ = 18 nm .

Fig. 8
Fig. 8

Fittings of n ( λ ) and k ( λ ) dependencies found from experimental data by model dependencies defined by Eq. (8).

Fig. 9
Fig. 9

Fittings of parameters A, B, C, λ g and n obtained from experimental data (circles) by linear functions (solid curves) (see the text for details).

Fig. 10
Fig. 10

Comparison of experimentally determined n and k val ues at wavelengths of 450, 500, and 550 nm with dependencies predicted by Eq. (9).

Tables (1)

Tables Icon

Table 1 Mass and Effective Thicknesses of Ag Si O 2 Composite Films

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

DF = j = 1 L [ S ( n ( λ j ) , k ( λ j ) , δ , λ j ) S ^ ( λ j ) Δ S j ] 2 + α 1 j = 1 L [ n ( λ j ) ] 2 + α 2 j = 1 L [ k ( λ j ) ] 2 ,
R ( λ ) R 1 + 2 π λ ( A R · 2 n ( λ ) k ( λ ) + B R · [ n 2 ( λ ) k 2 ( λ ) ] + C R ) δ , T ( λ ) T 1 + 2 π λ ( A T · 2 n ( λ ) k ( λ ) + B T · [ n 2 ( λ ) k 2 ( λ ) ] + C T ) δ ,
R ( λ ) R 1 + 2 π λ ( A R · 2 n ( λ ) k ( λ ) + B R · [ n 2 ( λ ) k 2 ( λ ) ] ) δ , T ( λ ) T 1 + 2 π λ ( A T · 2 n ( λ ) k ( λ ) + B T · [ n 2 ( λ ) k 2 ( λ ) ] ) δ .
Ψ ( λ ) Ψ 1 + 2 π λ ( A Ψ · 2 n ( λ ) k ( λ ) + B Ψ · [ n 2 ( λ ) k 2 ( λ ) ] + C Ψ ) δ , Δ ( λ ) Δ 1 + 2 π λ ( A Δ · 2 n ( λ ) k ( λ ) + B Δ · [ n 2 ( λ ) k 2 ( λ ) ] + C Δ ) δ .
Δ ( λ ) 4 π λ [ A sin ( 2 ϕ ) ξ A cos ( 2 ϕ ) η + C cos ( 2 ϕ ) ] δ , A = q a p ( q a p ) 2 ( q s p ) 2 q a s ( q a s ) 2 ( q s s ) 2 , C = q a p ( q s p ) 2 ( q a p ) 2 ( q s p ) 2 q a s [ ( q s s ) 2 + sin 2 θ ] ( q a s ) 2 ( q s s ) 2 ,
Ψ ( λ ) Ψ 0 ± 2 π λ q a p [ ( q s s ) 2 ( q a s ) 2 ] q a s [ ( q s p ) 2 ( q a p ) 2 ] ( q s s q a p q a s q s p ) 2 + ( q a s q a p q s s q s p ) 2 · 2 n ( λ ) k ( λ ) δ , Δ ( λ ) 4 π λ [ A · [ n 2 ( λ ) k 2 ( λ ) ] C ] δ , Ψ 0 = arctan [ | q a p q s p | q a p + q s p · q a s + q s s q s s q a s ] .
DF = K = 1 3 j = 1 190 [ Ψ ( n ( λ j ) , k ( λ j ) , δ , λ j , d ( 1 ) , d ( 2 ) , θ K ) Ψ ^ ( λ j , θ K ) Δ Ψ j ] 2 + K = 1 3 j = 1 190 [ Δ ( n ( λ j ) , k ( λ j ) , δ , λ j , d ( 1 ) , d ( 2 ) , θ K ) Δ ^ ( λ j , θ K ) Δ Δ j ] 2 + α 1 j = 1 190 [ n ( λ j ) ] 2 + α 2 j = 1 190 [ k ( λ j ) ] 2 ,
k ( E ) = A ( E E g ) 2 E 2 B E + C , n ( E ) = n + B α E + C α E 2 B E + C , B α = A Q ( B 2 2 + E g B E g 2 + C ) , C α = A Q ( [ E g 2 + C ] B 2 2 E g C ) , Q = 1 2 4 C B 2 , E = 1240 / λ , E g = 1240 / λ g .
k ( λ , δ ) = A ( δ ) [ λ g ( δ ) λ ] 2 C ( δ ) λ 2 B ( δ ) G λ + G 2 , n ( λ , δ ) = n ( δ ) + C α ( δ ) λ 2 + B α ( δ ) G λ C ( δ ) λ 2 B ( δ ) G λ + G 2 , B α = A ( δ ) Q ( δ ) { B 2 ( δ ) 2 + G λ g ( δ ) B ( δ ) [ G λ g ( δ ) ] 2 + C ( δ ) } , C α ( δ ) = A ( δ ) Q ( δ ) { [ ( G λ g ( δ ) ) 2 + C ( δ ) ] B ( δ ) 2 2 G λ g ( δ ) C ( δ ) } , Q ( δ ) = 1 2 4 C ( δ ) B 2 ( δ ) , G = 1240.
R ( λ ) R 1 ( λ ) + R | δ = 0 ( λ ) δ , T ( λ ) T 1 ( λ ) + T | δ = 0 ( λ ) δ , Ψ ( λ ) Ψ 1 ( λ ) + Ψ | δ = 0 ( λ ) δ , Δ ( λ ) Δ 1 ( λ ) + Δ | δ = 0 ( λ ) δ ,
A R = 4 [ cos 2 φ d { ( n s 2 1 ) ( cos 2 φ d + n s 2 n d 2 sin 2 φ d ) cos 2 2 φ d + 2 n s 2 sin 2 2 φ d ( cos 2 φ d sin 2 φ d n d 2 ) ( n s 2 n d 2 + n d 2 ) ( cos 2 φ d n s 2 n d 2 sin 2 φ d ) sin 2 2 φ d } + 1 2 sin 2 2 φ d { ( n s 2 1 ) ( 1 1 n d 2 ) cos 2 2 φ d + ( n s 2 n d 2 n d 2 ) ( 1 n s 2 n d 2 ) sin 2 2 φ d } ] / D R T 2 ,
B R = 4 [ ( n d 2 n s 2 n d 2 ) n s n d sin 3 2 φ d 2 n s n d sin 2 φ d cos 2 2 φ d ( n s 2 n d 2 sin 2 φ d n d 2 cos 2 φ d ) + n s 2 n d sin 4 φ d ( sin 2 2 φ d [ n d 2 + n s 2 n d 2 ] ( 1 + n s 2 ) ) ] / D R T 2 ,
C R = 4 [ n d n s ( n s 2 n d 2 n d 2 ) sin 3 2 φ d + 2 n s n d 3 sin 2 φ d cos 2 2 φ d ( n s 2 n d 2 cos 2 φ d n d 2 sin 2 φ d ) + 1 2 n d n s sin 4 φ d ( sin 2 2 φ d [ n d 2 + n s 2 n d 2 ] ( 1 + n s 2 ) ) ] / D R T 2 ,
A T = 4 [ cos 2 φ d { ( n s + 1 ) cos 2 φ d 1 n d 2 ( 1 + n s 2 ) sin 2 φ d } + 1 2 ( n s + n s n d 2 + 1 + n s 2 n d 2 ) sin 2 2 φ d ] / D R T 2 .
B T = 4 sin 2 φ d n d { 0.5 ( n s 2 + 1 ) cos 2 φ d + n s 2 n d 2 sin 2 φ d n d 2 cos 2 φ d } / D R T 2 ,
C T = 4 sin 2 φ d { 0.5 ( n s 2 + 1 ) n d cos 2 φ d + n s 2 cos 2 φ d n d 4 sin 2 φ d } / D R T 2 ,
A Ψ = β A p A s / β D Ψ , B Ψ = β B p B s / β D Ψ , C Ψ = β C p C s / β D Ψ ,
β = ( q a s + q s s ) ( q s s q a s ) ( q a p + q s p ) | q a p q s p | , D Ψ = ( q a p q a s q s p q s s ) 2 + ( q s p q a s q a p q s s ) 2 ,
A p , s = ( ( q a p , s ) 2 ( q s p , s ) 2 ) [ cos 3 2 φ d ( q s p , s A a p , s q a p , s A b p , s ) + sin 3 2 φ d ( q s p , s A c p , s q a p , s A d p , s ) ] + q a p , s q s p , s sin 4 φ d [ cos 2 φ d ( q a p , s A c p , s + q s p , s A d p , s ) + sin 2 φ d ( q a p , s A a p , s + q s p , s A b p , s ) ] ( ( q a p ) 2 + ( q s p ) 2 ) 1 2 sin 4 φ d [ cos 2 φ d ( q s p , s A c p , s + q a p , s A d p , s ) + sin 2 φ d ( q s p , s A a p , s + q a p , s A b p , s ) ] ,
B p , s = ( ( q a p , s ) 2 ( q s p , s ) 2 ) [ cos 3 2 φ d ( q s p , s B a p , s q a p , s B b p , s ) + sin 3 2 φ d ( q s p , s B c p , s q a p , s B d p , s ) ] + q a p , s q s p , s sin 4 φ d [ cos 2 φ d ( q a p , s B c p , s + q s p , s B d p , s ) + sin 2 φ d ( q a p , s B a p , s + q s p , s B b p , s ) ] ( ( q a p ) 2 + ( q s p ) 2 ) 1 2 sin 4 φ d [ cos 2 φ d ( q s p , s B c p , s + q a p , s B d p , s ) + sin 2 φ d ( q s p , s B a p , s + q a p , s B b p , s ) ] ,
C p , s = ( ( q a p , s ) 2 ( q s p , s ) 2 ) [ cos 3 2 φ d ( q s p , s C a p , s q a p , s C b p , s ) + sin 3 2 φ d ( q s p , s C c p , s q a p , s C d p , s ) ] + q a p , s q s p , s sin 4 φ d [ cos 2 φ d ( q a p , s C c p , s + q s p , s C d p , s ) + sin 2 φ d ( q a p , s C a p , s + q s p , s C b p , s ) ] ( ( q a p ) 2 + ( q s p ) 2 ) 1 2 sin 4 φ d [ cos 2 φ d ( q s p , s C c p , s + q a p , s C d p , s ) + sin 2 φ d ( q s p , s C a p , s + q a p , s C b p , s ) ] ,
A a p , s = q a p , s q s p , s sin 2 φ d , A b p , s = cos 2 φ d , A c p , s = q a p , s sin 2 φ d / q s p , s , A d p , s = sin 2 φ d / 2 , B a p , s = 0.5 q a p , s q s p , s sin 2 φ d , B b p , s = 0.5 sin 2 φ d , B c p , s = q a p , s sin 2 φ d / q s p , s , B d p , s = cos 2 φ d , C a p = 0.5 q a p q s p sin 2 φ d , C b p = 0.5 ( q s p ) 2 sin 2 φ d , C c p = q a p q s p cos 2 φ d , C d p = ( q s p ) 2 sin 2 φ d , C a s = 0.5 q a s ( q s s α 2 / q s s ) sin 2 φ d , C b s = 0.5 ( α 2 ( q s s ) 2 ) sin 2 φ d , C c s = q a s q s s ( cos 2 φ d + α 2 sin 2 φ d / ( q s s ) 2 ) , C d s = ( ( q s s ) 2 sin 2 φ d + α 2 cos 2 φ d ) ,
A Δ = 0.25 sin 4 φ d ( μ p α p / q d p μ s α s / q d s + ( μ + s ) 2 α + s / q d s ( μ + p ) 2 α + p / q d p ) + sin 2 φ d ( γ + p β p α p + γ p β + p α + p γ + s β s α s γ s β + s α + s ) , B Δ = cos 2 φ d ( γ + p μ p α p γ p μ + p α + p + γ + s μ s α s + γ s μ + s α + s ) + 0.5 sin 2 φ d ( β p α p μ p / q d p β + p α + p μ + p / q d p + β s α s μ - s / q d s β + s α + s μ + s / q d s ) , C Δ = cos 2 φ d [ ( q d p ) 2 ( ν + p α p μ p ν p α + p μ + p ) α s ( α 2 γ + s + ν + s ( q d s ) 2 ) μ s α + s ( α 2 γ - s ν - s ( q d s ) 2 ) μ + s ] + 0.5 sin 2 2 φ d [ α p q d p μ p β p α + p q d p β + p μ + p + ( α s β s μ s α + s β + μ + s ) ( α 2 / q d s q d s ) ] ,
μ + , s , p = q a s , p q s s , p , β + , s , p = q a s , p q s s , p / q d s , p ± q d s , p , γ + , s , p = cos 2 φ d ± q a s , p q s s , p sin 2 φ d / ( q d s , p ) 2 , ν ± s , p = q a s , p q s s , p cos 2 φ d / ( q d s , p ) 2 ± sin 2 φ d , α + , s , p = [ ( μ + , s , p ) 2 cos 2 2 φ d + ( β + , s , p ) 2 sin 2 2 φ d ] 1 , q a , s , d s = ( n a , s , d ) 2 α 2 , q a , s , d p = ( n a , s , d ) 2 / ( n a , s , d ) 2 α 2 , α = n a sin 2 θ .

Metrics