Abstract

A recent paper described experiments completed to study the effect of scattering on the propagation of modulated light in laboratory tank water [Appl. Opt. 48, 2607 (2009)]. Those measurements were limited to a specific scattering agent (Maalox antacid) with a fixed scattering albedo (0.95). The purpose of this paper is to study the effects of different scattering agents and scattering albedos on modulated light propagation in water. The results show that the scattering albedo affects the number of attenuation lengths that the modulated optical signal propagates without distortion, while the type of scattering agent affects the degree to which the modulation is distorted with increasing attenuation length.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mullen, A. Laux, and B. Cochenour, “Propagation of modulated light in water: implications for imaging and communications systems,” Appl. Opt. 48, 2607–2612 (2009).
    [CrossRef] [PubMed]
  2. T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Reference 72-78 H (Scripps Institute of Oceanography, 1972),
  3. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).
  4. B. Cochenour, L. Mullen, and J. Muth, “Effect of scattering albedo on attenuation and polarization of light underwater,” Opt. Lett. 35, 2088–2090 (2010).
    [CrossRef] [PubMed]
  5. W. H. Wells, “Loss of resolution in water as a result of multiple small-angle scattering,” J. Opt. Soc. Am. 59, 686–691(1969).
    [CrossRef]
  6. F. D. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, W. B. Britton, and B. Ramos, “Experiments in bistatic laser line scan (LLS) underwater imaging,” in Proceedings of OCEANS 2009 (IEEE, 2009), pp. 1–9.
  7. Y. C. Agrawal and O. A. Mikkelsen, “Empirical forward scattering phase functions from 0.08 to 16° for randomly shaped terrigenous 1–21 μm sediment grains,” Opt. Express 17, 8805–8814 (2009).
    [CrossRef] [PubMed]
  8. A. Kouzoubov, M. J. Brennan, and J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998).
    [CrossRef]
  9. R. M. Lerner and J. D. Summers, “Monte Carlo description of time- and space-resolved multiple forward scatter in natural water,” Appl. Opt. 21, 861–869 (1982).
    [CrossRef] [PubMed]

2010

2009

1998

1982

1969

Agrawal, Y. C.

Brennan, M. J.

Britton, W. B.

F. D. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, W. B. Britton, and B. Ramos, “Experiments in bistatic laser line scan (LLS) underwater imaging,” in Proceedings of OCEANS 2009 (IEEE, 2009), pp. 1–9.

Caimi, F. M.

F. D. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, W. B. Britton, and B. Ramos, “Experiments in bistatic laser line scan (LLS) underwater imaging,” in Proceedings of OCEANS 2009 (IEEE, 2009), pp. 1–9.

Cochenour, B.

Dalgleish, F. D.

F. D. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, W. B. Britton, and B. Ramos, “Experiments in bistatic laser line scan (LLS) underwater imaging,” in Proceedings of OCEANS 2009 (IEEE, 2009), pp. 1–9.

Kouzoubov, A.

Laux, A.

Lerner, R. M.

Mikkelsen, O. A.

Mobley, C. D.

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).

Mullen, L.

Muth, J.

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Reference 72-78 H (Scripps Institute of Oceanography, 1972),

Ramos, B.

F. D. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, W. B. Britton, and B. Ramos, “Experiments in bistatic laser line scan (LLS) underwater imaging,” in Proceedings of OCEANS 2009 (IEEE, 2009), pp. 1–9.

Summers, J. D.

Thomas, J. C.

Vuorenkoski, A. K.

F. D. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, W. B. Britton, and B. Ramos, “Experiments in bistatic laser line scan (LLS) underwater imaging,” in Proceedings of OCEANS 2009 (IEEE, 2009), pp. 1–9.

Wells, W. H.

Appl. Opt.

J. Opt. Soc. Am.

Opt. Express

Opt. Lett.

Other

T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Reference 72-78 H (Scripps Institute of Oceanography, 1972),

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).

F. D. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, W. B. Britton, and B. Ramos, “Experiments in bistatic laser line scan (LLS) underwater imaging,” in Proceedings of OCEANS 2009 (IEEE, 2009), pp. 1–9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for measuring the frequency response of forward-scattered light with a mode-locked laser. The PMT output is split into its AC and DC components with a bias tee and they are analyzed with a microwave spectrum analyzer and a multimeter, respectively.

Fig. 2
Fig. 2

Magnified images of (a)  Mg ( OH ) 2 and (b)  Al ( OH ) 3 particles.

Fig. 3
Fig. 3

Image of ATD particles (from [7]).

Fig. 4
Fig. 4

MD as a function of attenuation length for light modulated at (a) 0.1, (b) 0.5, and (c)  1 GHz after propagating through water with different scattering agents.

Fig. 5
Fig. 5

VSFs measured with a LISST-100 instrument for different scattering agents. The VSF data has been normalized to the beam attenuation coefficient (c) for each data set.

Fig. 6
Fig. 6

DOP versus attenuation length for the (a) DC ( f = 0 ) component and the components modulated at (b)  f = 0.1 GHz , (c)  f = 0.5 GHz , and (d)  f = 1.0 GHz .

Fig. 7
Fig. 7

MD versus attenuation length for light modulated at different frequencies after propagating through Maalox-enhanced water with different single scattering albedos: (a)  ω 0 = 0.95 and (b)  ω 0 = 0.70 .

Fig. 8
Fig. 8

MD versus attenuation length for light modulated at different frequencies after propagating through Mg ( OH ) 2 -enhanced water with different single scattering albedos: (a)  ω 0 = 0.95 and (b)  ω 0 = 0.70 .

Fig. 9
Fig. 9

DOP versus attenuation length for light modulated at different frequencies after propagating through Maalox-enhanced water with different single scattering albedos: (a)  ω 0 = 0.95 and (b)  ω 0 = 0.70 .

Fig. 10
Fig. 10

DOP versus attenuation length for light modulated at different frequencies after propagating through Mg ( OH ) 2 - enhanced water with different single scattering albedos: (a)  ω 0 = 0.95 and (b)  ω 0 = 0.70 .

Fig. 11
Fig. 11

MD as a function of frequency for light after propagating 20 attenuation lengths through water with Maalox and Mg ( OH ) 2 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

MD ( f ) = V r f ( f ) 2 V dc ,
DOP ( f ) = V x , CO ( f ) V x , CROSS ( f ) V x , CO ( f ) + V x , CROSS ( f ) ,
L D = L sca 1 cos θ .
cos θ = 0.5 0 π ρ ( θ ) cos θ sin θ d θ ,
c d = 10 ω 0 .

Metrics