Abstract

The performance of broadband volume holographic imaging system in terms of depth selectivity is investigated. The mechanism for depth resolution degradation is explained. In order to overcome this resolution degradation, a novel imaging device, the confocal-rainbow volume holographic imaging system, is proposed. Modeling and experimental validation of the performance of this novel imaging system indicates that depth resolution <16μm is achievable. The lateral resolution of this device is <2.5μm along a field of view of 300μm×100μm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fujimoto and D. Farkas, Biomedical Optical Imaging(Oxford, 2009).
  2. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856(2002).
    [CrossRef]
  3. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1533–1551 (2004).
    [CrossRef] [PubMed]
  4. Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
    [CrossRef]
  5. A. Sinha and G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43, 5214–5221 (2004).
    [CrossRef] [PubMed]
  6. Y. Luo, P. J. Gelsinger, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial filters,” Opt. Lett. 33, 566–568 (2008).
    [CrossRef] [PubMed]
  7. P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
    [CrossRef]
  8. Y. Luo, J. M. Castro, J. K. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010).
    [CrossRef] [PubMed]
  9. W. Sun and G. Barbastathis, “Rainbow volume holographic imaging,” Opt. Lett. 30, 976–978 (2005).
    [CrossRef] [PubMed]
  10. J. M. Castro, E. de Leon, J. Barton, and R. Kostuk, “Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing,” Appl. Opt. 50, 170–176 (2011).
    [CrossRef] [PubMed]
  11. J. M. Castro, J. Brownlee, E. de Leon, J. Barton, and R. K. Kostuk, “Resolution dependance on index modulation profile and effective thickness in volume holographic imaging systems,” Appl. Opt. (to be published).
  12. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  13. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  15. A. Sato and R. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly (methylmethacrylate),” Proc. SPIE 5216, 44–52 (2003).
    [CrossRef]
  16. D. Kermish, “Nonuniform sinousoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969).
    [CrossRef]
  17. R. Kowarschik, “Diffraction efficiency of attenuated sinusoidally modulated gratings in volume holograms,” J. Mod. Opt. 23, 1039–1051 (1976).
    [CrossRef]
  18. T. Kubota, “The diffraction efficiency of holograms gratings recorded in an absorptive medium,” Opt. Commun. 16, 347–349 (1976).
    [CrossRef]
  19. S. B. Oh, J. M. Watson, and G. Barbastathis, “Theoretical analysis of curved Bragg diffraction images from plane reference volume holograms,” Appl. Opt. 48, 5984–5996 (2009).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Y. Luo, J. M. Castro, J. K. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2005 (2)

W. Sun and G. Barbastathis, “Rainbow volume holographic imaging,” Opt. Lett. 30, 976–978 (2005).
[CrossRef] [PubMed]

Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

2004 (2)

2003 (1)

A. Sato and R. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly (methylmethacrylate),” Proc. SPIE 5216, 44–52 (2003).
[CrossRef]

2002 (1)

1976 (2)

R. Kowarschik, “Diffraction efficiency of attenuated sinusoidally modulated gratings in volume holograms,” J. Mod. Opt. 23, 1039–1051 (1976).
[CrossRef]

T. Kubota, “The diffraction efficiency of holograms gratings recorded in an absorptive medium,” Opt. Commun. 16, 347–349 (1976).
[CrossRef]

1969 (2)

D. Kermish, “Nonuniform sinousoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969).
[CrossRef]

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Barbastathis, G.

Barton, J.

J. M. Castro, E. de Leon, J. Barton, and R. Kostuk, “Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing,” Appl. Opt. 50, 170–176 (2011).
[CrossRef] [PubMed]

J. M. Castro, J. Brownlee, E. de Leon, J. Barton, and R. K. Kostuk, “Resolution dependance on index modulation profile and effective thickness in volume holographic imaging systems,” Appl. Opt. (to be published).

Barton, J. K.

Bearman, G.

Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

Brownlee, J.

J. M. Castro, J. Brownlee, E. de Leon, J. Barton, and R. K. Kostuk, “Resolution dependance on index modulation profile and effective thickness in volume holographic imaging systems,” Appl. Opt. (to be published).

Castro, J. M.

J. M. Castro, E. de Leon, J. Barton, and R. Kostuk, “Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing,” Appl. Opt. 50, 170–176 (2011).
[CrossRef] [PubMed]

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Y. Luo, J. M. Castro, J. K. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010).
[CrossRef] [PubMed]

J. M. Castro, J. Brownlee, E. de Leon, J. Barton, and R. K. Kostuk, “Resolution dependance on index modulation profile and effective thickness in volume holographic imaging systems,” Appl. Opt. (to be published).

Cooke, D. J.

L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).

de Leon, E.

J. M. Castro, E. de Leon, J. Barton, and R. Kostuk, “Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing,” Appl. Opt. 50, 170–176 (2011).
[CrossRef] [PubMed]

J. M. Castro, J. Brownlee, E. de Leon, J. Barton, and R. K. Kostuk, “Resolution dependance on index modulation profile and effective thickness in volume holographic imaging systems,” Appl. Opt. (to be published).

Farkas, D.

J. Fujimoto and D. Farkas, Biomedical Optical Imaging(Oxford, 2009).

Fujimoto, J.

J. Fujimoto and D. Farkas, Biomedical Optical Imaging(Oxford, 2009).

Gelsinger, P. J.

Gelsinger-Austin, P. J.

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Johnson, W. R.

Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

Kermish, D.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kostuk, R.

J. M. Castro, E. de Leon, J. Barton, and R. Kostuk, “Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing,” Appl. Opt. 50, 170–176 (2011).
[CrossRef] [PubMed]

A. Sato and R. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly (methylmethacrylate),” Proc. SPIE 5216, 44–52 (2003).
[CrossRef]

Kostuk, R. K.

Y. Luo, J. M. Castro, J. K. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010).
[CrossRef] [PubMed]

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Y. Luo, P. J. Gelsinger, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial filters,” Opt. Lett. 33, 566–568 (2008).
[CrossRef] [PubMed]

J. M. Castro, J. Brownlee, E. de Leon, J. Barton, and R. K. Kostuk, “Resolution dependance on index modulation profile and effective thickness in volume holographic imaging systems,” Appl. Opt. (to be published).

Kowarschik, R.

R. Kowarschik, “Diffraction efficiency of attenuated sinusoidally modulated gratings in volume holograms,” J. Mod. Opt. 23, 1039–1051 (1976).
[CrossRef]

Kubota, T.

T. Kubota, “The diffraction efficiency of holograms gratings recorded in an absorptive medium,” Opt. Commun. 16, 347–349 (1976).
[CrossRef]

Li, Z.

Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

Liu, W.

Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856(2002).
[CrossRef]

Luo, Y.

Oh, S. B.

Psaltis, D.

Saltis, D. P.

Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

Sato, A.

A. Sato and R. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly (methylmethacrylate),” Proc. SPIE 5216, 44–52 (2003).
[CrossRef]

Shih, T.

Sinha, A.

Solymar, L.

L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).

Sun, W.

Watson, J. M.

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

S. B. Oh, J. M. Watson, and G. Barbastathis, “Theoretical analysis of curved Bragg diffraction images from plane reference volume holograms,” Appl. Opt. 48, 5984–5996 (2009).
[CrossRef] [PubMed]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Mod. Opt. (1)

R. Kowarschik, “Diffraction efficiency of attenuated sinusoidally modulated gratings in volume holograms,” J. Mod. Opt. 23, 1039–1051 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

T. Kubota, “The diffraction efficiency of holograms gratings recorded in an absorptive medium,” Opt. Commun. 16, 347–349 (1976).
[CrossRef]

Opt. Eng. (1)

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (2)

Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

A. Sato and R. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly (methylmethacrylate),” Proc. SPIE 5216, 44–52 (2003).
[CrossRef]

Other (4)

L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

J. M. Castro, J. Brownlee, E. de Leon, J. Barton, and R. K. Kostuk, “Resolution dependance on index modulation profile and effective thickness in volume holographic imaging systems,” Appl. Opt. (to be published).

J. Fujimoto and D. Farkas, Biomedical Optical Imaging(Oxford, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic layout of VHIS using a broadband source. L o , objective lens; L c , collector lens.

Fig. 2
Fig. 2

Three images of Air Force bar chart 1951 at different depths using broadband VHIS, showing that there is no depth selectivity.

Fig. 3
Fig. 3

VHIS using monochromatic illumination. Only light on Bragg condition is capable of mapping points in object space to image plane; fo, focal length of L o .

Fig. 4
Fig. 4

VHIS using broadband illumination. At-focus case, Δ z = 0 , shows that mapping from object space to image space uses only a narrow region of the spectrum, centered at λ o B λ , spectral width of source.

Fig. 5
Fig. 5

VHIS using broadband illumination. Out-of-focus case, Δ z 0 , shows that mapping occurs at any wavelength of the spectrum. Therefore, matching the Bragg condition, required in the monochromatic VHIS, is not relevant here. There is essentially no depth selectivity dependence on the hologram.

Fig. 6
Fig. 6

z-PSF for VHIS for different wavelengths. Solid black curve, z-PSF for a VHIS using monochromatic source at λ o = 505 nm . z- PSF FWHM bandwidth at λ o is 9 μm . Dotted black curve, z-PSF of a VHIS using a broadband source, which is the average of monochromatic z-PSFs. Vertical axis represents PSF or energy collected at the camera (arbitrary units in this axis).

Fig. 7
Fig. 7

Rainbow illumination concept with external illuminator. R and B, to-points in the object plane imaged using red and blue wavelengths, respectively. The ideal illuminator will match the positions and wavelengths of R and B. However, it is shown that the illuminated plane is tilted and the illuminating points with red and blue wavelengths are R and B .

Fig. 8
Fig. 8

Basic schematic of proposed CR-VHIS. Schematic shows two coordinated systems for the object and HOE plane used in numerical simulation. Angle θ is the angle subtended between the x and x h axes. Angle β indicates an additional rotation along the x h axis to avoid having reflection on the HOE surface reach the camera. BS, beam splitter.

Fig. 9
Fig. 9

Rainbow illumination projected in the object plane.

Fig. 10
Fig. 10

Modeled z-PSF of CR-VHIS. y axis represents the energy integrated along complete FOV. Insets show images observed in camera.

Fig. 11
Fig. 11

z-PSF of CR-VHIS and images obtained at several depths. E, energy in arbitrary units.

Metrics