Abstract

Generation of optical vortices using a new design of adaptive helical mirror (AHM) is reported. The new AHM is a reflective device that can generate an optical vortex of any desired topological charge, both positive and negative, within its breakdown limits. The most fascinating feature of the AHM is that the topological charge of the optical vortex generated with it can be changed in real time by varying the excitation voltage. Generation of optical vortices up to topological charge 4 has been demonstrated. The presence of a vortex in the optical field generated with the AHM is confirmed by producing both fork and spiral fringes in an interferometric setup. Various design improvements to further enhance the performance of the reported AHM are discussed. Some of the important applications of AHM are also listed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
    [CrossRef]
  2. K. T. Gahagan and G. A. Swartzlander Jr., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533–537(1999).
    [CrossRef]
  3. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
    [CrossRef] [PubMed]
  4. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2492 (1996).
    [CrossRef]
  5. W. M. Lee and X. C. Yuan, “Observation of three-dimensional optical stacking of micro particles using a single Laguerre-Gaussian beam,” Appl. Phys. Lett. 83, 5124–5126 (2003).
    [CrossRef]
  6. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300–306 (1998).
    [CrossRef]
  7. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature (London) 412, 313–316 (2001).
    [CrossRef]
  8. G. Gibson, J. Courtial, and M. J. Padgett, “Free space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [CrossRef] [PubMed]
  9. J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 0539011 (2006).
    [CrossRef]
  10. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30, 1953–1955 (2005).
    [CrossRef] [PubMed]
  11. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005).
    [CrossRef] [PubMed]
  12. P. Senthilkumaran, “Optical phase singularities in detection of laser beam collimation,” Appl. Opt. 42, 6314–6320 (2003).
    [CrossRef] [PubMed]
  13. G. Swartzlander, “The optical vortex lens,” Opt. Photonics News 17(11), 39–43 (2006).
    [CrossRef]
  14. J. A. Davis, I. Moreno, and K. Crabtree, “Optical processing with vortex-producing lenses,” Appl. Opt. 43, 1360–1367 (2004).
    [CrossRef] [PubMed]
  15. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327(1994).
    [CrossRef]
  16. K. Sueda, G. Miyaji, and M. Nakatsuka, “Laguerre–Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548–53 (2004).
    [CrossRef] [PubMed]
  17. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer generated hologram,” Opt. Lett. 17, 221–223 (1992).
    [CrossRef] [PubMed]
  18. S. Vyas and P. Senthilkumaran, “Two dimensional vortex lattices from pure wavefront tilts,” Opt. Commun. 283, 2767–2771 (2010).
    [CrossRef]
  19. X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
    [CrossRef]
  20. J. Strohaber, T. Scarborough, and C. J. G. J. Uiterwaal, “Ultrashort intense-field optical vortices produced with laser-etched mirrors,” Appl. Opt. 46, 8583–8590 (2007).
    [CrossRef] [PubMed]
  21. R. K. Tyson, M. Scipioni, and J. Viegas, “Generation of an optical vortex with a segmented deformable mirror,” Appl. Opt. 47, 6300–6306 (2008).
    [CrossRef] [PubMed]
  22. A. Sobolev, T. Cherezova, V. Samarkin, and A. Kudryashov, “Screw phase dislocation formation by means of flexible bimorph mirror,” in Eighth International Conference on Laser and Fiber-Optical Networks Modeling (IEEE, 2006) pp. 434–437.
    [CrossRef]
  23. D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, “Adaptive helical mirror for generation of optical phase singularity,” Appl. Opt. 47, 1378–1383 (2008).
    [CrossRef] [PubMed]
  24. S. Takahashi, “Multilayer piezoelectric ceramic actuators and their applications,” Jpn. J. Appl. Phys. 24, 41–45(1995).
  25. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, 1990).
  26. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic , 1971).
  27. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990(1992).
    [CrossRef]
  28. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
    [CrossRef]
  29. D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46, 419–423 (2008).
    [CrossRef]

2010

S. Vyas and P. Senthilkumaran, “Two dimensional vortex lattices from pure wavefront tilts,” Opt. Commun. 283, 2767–2771 (2010).
[CrossRef]

2008

2007

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

J. Strohaber, T. Scarborough, and C. J. G. J. Uiterwaal, “Ultrashort intense-field optical vortices produced with laser-etched mirrors,” Appl. Opt. 46, 8583–8590 (2007).
[CrossRef] [PubMed]

2006

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 0539011 (2006).
[CrossRef]

G. Swartzlander, “The optical vortex lens,” Opt. Photonics News 17(11), 39–43 (2006).
[CrossRef]

2005

2004

2003

W. M. Lee and X. C. Yuan, “Observation of three-dimensional optical stacking of micro particles using a single Laguerre-Gaussian beam,” Appl. Phys. Lett. 83, 5124–5126 (2003).
[CrossRef]

P. Senthilkumaran, “Optical phase singularities in detection of laser beam collimation,” Appl. Opt. 42, 6314–6320 (2003).
[CrossRef] [PubMed]

2002

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

2001

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature (London) 412, 313–316 (2001).
[CrossRef]

1999

1998

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300–306 (1998).
[CrossRef]

1996

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2492 (1996).
[CrossRef]

1995

S. Takahashi, “Multilayer piezoelectric ceramic actuators and their applications,” Jpn. J. Appl. Phys. 24, 41–45(1995).

1994

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327(1994).
[CrossRef]

1993

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

1992

1974

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
[CrossRef]

Ahluwalia, B. P. S.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

Allen, L.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2492 (1996).
[CrossRef]

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300–306 (1998).
[CrossRef]

Basistiy, I. V.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

Bazhenov, V. Yu.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990(1992).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327(1994).
[CrossRef]

Bernet, S.

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
[CrossRef]

Bu, J.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

Burge, R. E.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

Cheong, W. C.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

Cherezova, T.

A. Sobolev, T. Cherezova, V. Samarkin, and A. Kudryashov, “Screw phase dislocation formation by means of flexible bimorph mirror,” in Eighth International Conference on Laser and Fiber-Optical Networks Modeling (IEEE, 2006) pp. 434–437.
[CrossRef]

Clifford, M. A.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300–306 (1998).
[CrossRef]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327(1994).
[CrossRef]

Cook, W. R.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic , 1971).

Courtial, J.

G. Gibson, J. Courtial, and M. J. Padgett, “Free space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef] [PubMed]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300–306 (1998).
[CrossRef]

Crabtree, K.

Davis, J. A.

Dholakia, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300–306 (1998).
[CrossRef]

Foo, G.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 0539011 (2006).
[CrossRef]

Fürhapter, S.

Gahagan, K. T.

Ghai, D. P.

D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, “Adaptive helical mirror for generation of optical phase singularity,” Appl. Opt. 47, 1378–1383 (2008).
[CrossRef] [PubMed]

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46, 419–423 (2008).
[CrossRef]

Gibson, G.

Heckenberg, N. R.

Herbert, J. M.

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, 1990).

Jaffe, B.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic , 1971).

Jaffe, H.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic , 1971).

Jesacher, A.

Johnson, E. G.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 0539011 (2006).
[CrossRef]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327(1994).
[CrossRef]

Kudryashov, A.

A. Sobolev, T. Cherezova, V. Samarkin, and A. Kudryashov, “Screw phase dislocation formation by means of flexible bimorph mirror,” in Eighth International Conference on Laser and Fiber-Optical Networks Modeling (IEEE, 2006) pp. 434–437.
[CrossRef]

Lee, J. H.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 0539011 (2006).
[CrossRef]

Lee, W. M.

W. M. Lee and X. C. Yuan, “Observation of three-dimensional optical stacking of micro particles using a single Laguerre-Gaussian beam,” Appl. Phys. Lett. 83, 5124–5126 (2003).
[CrossRef]

Lin, J.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature (London) 412, 313–316 (2001).
[CrossRef]

McDuff, R.

Miyaji, G.

Moreno, I.

Moulson, A. J.

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, 1990).

Nakatsuka, M.

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
[CrossRef]

Padgett, M. J.

G. Gibson, J. Courtial, and M. J. Padgett, “Free space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2492 (1996).
[CrossRef]

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Ritsch-Marte, M.

Samarkin, V.

A. Sobolev, T. Cherezova, V. Samarkin, and A. Kudryashov, “Screw phase dislocation formation by means of flexible bimorph mirror,” in Eighth International Conference on Laser and Fiber-Optical Networks Modeling (IEEE, 2006) pp. 434–437.
[CrossRef]

Scarborough, T.

Scipioni, M.

Senthilkumaran, P.

S. Vyas and P. Senthilkumaran, “Two dimensional vortex lattices from pure wavefront tilts,” Opt. Commun. 283, 2767–2771 (2010).
[CrossRef]

D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, “Adaptive helical mirror for generation of optical phase singularity,” Appl. Opt. 47, 1378–1383 (2008).
[CrossRef] [PubMed]

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46, 419–423 (2008).
[CrossRef]

P. Senthilkumaran, “Optical phase singularities in detection of laser beam collimation,” Appl. Opt. 42, 6314–6320 (2003).
[CrossRef] [PubMed]

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Simpson, N. B.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2492 (1996).
[CrossRef]

Sirohi, R. S.

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46, 419–423 (2008).
[CrossRef]

D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, “Adaptive helical mirror for generation of optical phase singularity,” Appl. Opt. 47, 1378–1383 (2008).
[CrossRef] [PubMed]

Smith, C. P.

Sobolev, A.

A. Sobolev, T. Cherezova, V. Samarkin, and A. Kudryashov, “Screw phase dislocation formation by means of flexible bimorph mirror,” in Eighth International Conference on Laser and Fiber-Optical Networks Modeling (IEEE, 2006) pp. 434–437.
[CrossRef]

Soskin, M. S.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990(1992).
[CrossRef]

Strohaber, J.

Sueda, K.

Swartzlander, G.

G. Swartzlander, “The optical vortex lens,” Opt. Photonics News 17(11), 39–43 (2006).
[CrossRef]

Swartzlander, G. A.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 0539011 (2006).
[CrossRef]

K. T. Gahagan and G. A. Swartzlander Jr., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533–537(1999).
[CrossRef]

Takahashi, S.

S. Takahashi, “Multilayer piezoelectric ceramic actuators and their applications,” Jpn. J. Appl. Phys. 24, 41–45(1995).

Tao, S. H.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

Tyson, R. K.

Uiterwaal, C. J. G. J.

Vasnetsov, M. V.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990(1992).
[CrossRef]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature (London) 412, 313–316 (2001).
[CrossRef]

Viegas, J.

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Vyas, S.

S. Vyas and P. Senthilkumaran, “Two dimensional vortex lattices from pure wavefront tilts,” Opt. Commun. 283, 2767–2771 (2010).
[CrossRef]

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46, 419–423 (2008).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature (London) 412, 313–316 (2001).
[CrossRef]

White, A. G.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327(1994).
[CrossRef]

Yuan, X. C.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

W. M. Lee and X. C. Yuan, “Observation of three-dimensional optical stacking of micro particles using a single Laguerre-Gaussian beam,” Appl. Phys. Lett. 83, 5124–5126 (2003).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature (London) 412, 313–316 (2001).
[CrossRef]

Zhang, L. S.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007).
[CrossRef]

Appl. Phys. Lett.

W. M. Lee and X. C. Yuan, “Observation of three-dimensional optical stacking of micro particles using a single Laguerre-Gaussian beam,” Appl. Phys. Lett. 83, 5124–5126 (2003).
[CrossRef]

J. Mod. Opt.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2492 (1996).
[CrossRef]

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990(1992).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

S. Takahashi, “Multilayer piezoelectric ceramic actuators and their applications,” Jpn. J. Appl. Phys. 24, 41–45(1995).

Nature (London)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature (London) 412, 313–316 (2001).
[CrossRef]

Opt. Commun.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300–306 (1998).
[CrossRef]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327(1994).
[CrossRef]

S. Vyas and P. Senthilkumaran, “Two dimensional vortex lattices from pure wavefront tilts,” Opt. Commun. 283, 2767–2771 (2010).
[CrossRef]

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46, 419–423 (2008).
[CrossRef]

Opt. Lett.

Opt. Photonics News

G. Swartzlander, “The optical vortex lens,” Opt. Photonics News 17(11), 39–43 (2006).
[CrossRef]

Phys. Rev. Lett.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 0539011 (2006).
[CrossRef]

Proc. R. Soc. A

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
[CrossRef]

Science

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Other

A. Sobolev, T. Cherezova, V. Samarkin, and A. Kudryashov, “Screw phase dislocation formation by means of flexible bimorph mirror,” in Eighth International Conference on Laser and Fiber-Optical Networks Modeling (IEEE, 2006) pp. 434–437.
[CrossRef]

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, 1990).

B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic , 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

CAD model of PZT tube with a longitudinal cut and outer surface helically electroded.

Fig. 2
Fig. 2

CAD model of mirror substrate with central hole and a radial cut.

Fig. 3
Fig. 3

CAD model of assembled AHM.

Fig. 4
Fig. 4

CAD model of mounted assembly of AHM.

Fig. 5
Fig. 5

Experimental scheme for testing optical vortices.

Fig. 6
Fig. 6

Interference pattern with straight fringes.

Fig. 7
Fig. 7

Interference patterns with (a) one, (b) two, (c) three, and (d) four additional fringes on the left part of the interference pattern, confirming the presence of optical vortices with topological charges 1, 2, 3, and 4, respectively.

Fig. 8
Fig. 8

Interference pattern with circular fringes.

Fig. 9
Fig. 9

Interference patterns with (a) one, (b) two, (c) three and (d) four start spiral fringes (spiraling in the counterclockwise direction) corresponding to optical vortices of charges 1, 2, 3, and 4, respectively.

Fig. 10
Fig. 10

Interference patterns with (a) one and (b) two start spiral fringes (spiraling in the clockwise direction) corresponding to optical vortices of charges 1 and 2 , respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ l = V d 31 l t ,
U ( r , ϕ , z ) = U exp ( i k Δ z ( r , ϕ ) ) ,

Metrics