Abstract

We propose a polarizing color filter based on a one-dimensional subwavelength metal–dielectric grating combining the functions of a polarizer and a color filter. The proposed device consists of three parts: a substrate, a dielectric grating, and a metal grating. The effects of the dielectric grating and the metal grating are investigated in detail by rigorous coupled-wave analysis. Performance is enhanced effectively by utilizing a dielectric grating of high equivalent refractive index. Typical optimized structural parameters are obtained, in which more than 72.6% broadband transmission with >21dB polarization extinction ratio are simultaneously achieved for a tricolor filter. For transverse electric (TE) polarized light, its reflection efficiency is more than 71.8% in the broad passband light range, which can be recycled by rotating the TE polarization in part into transverse magnetic polarization and reimpinging on the designed device to increase the total energy efficiency. Numerical results show that peak transmission efficiency (PTE) is increased by at least 12.9% using recycled TE-polarized light.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
    [CrossRef]
  2. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
    [CrossRef] [PubMed]
  3. P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 0147617 (6 July 2006).
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  6. A. Degion, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329(2002).
    [CrossRef]
  7. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15, 15457–15463 (2007).
    [CrossRef] [PubMed]
  8. Y. Ye, Y. Zhou, and L. S. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48, 5035–5039 (2009).
    [CrossRef] [PubMed]
  9. Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
    [CrossRef]
  10. D. Nazarova, B. Mednikarov, and P. Sharlandjiev, “Resonant optical transmission from a one-dimensional relief metalized subwavelength grating,” Appl. Opt. 46, 8250–8255 (2007).
    [CrossRef] [PubMed]
  11. Z. B. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
    [CrossRef]
  12. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals, Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119(1983).
    [CrossRef] [PubMed]
  13. M. G. Maharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  14. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695–2703 (1994).
    [CrossRef]
  15. M. G. Maharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  16. K. W. Chien and H. P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Appl. Opt. 43, 1830–1834 (2004).
    [CrossRef] [PubMed]
  17. S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17, 4436–4438 (2006).
    [CrossRef]

2010 (1)

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

2009 (1)

2008 (2)

Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
[CrossRef] [PubMed]

Z. B. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
[CrossRef]

2007 (3)

2006 (2)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17, 4436–4438 (2006).
[CrossRef]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Degion, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329(2002).
[CrossRef]

1994 (1)

1986 (1)

1983 (2)

Alexander, R. W.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

A. Degion, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329(2002).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Chen, L. S.

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. S. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48, 5035–5039 (2009).
[CrossRef] [PubMed]

Chen, P. C.

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 0147617 (6 July 2006).

Chien, K. W.

Chiu, C. H.

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 0147617 (6 July 2006).

Degion, A.

A. Degion, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329(2002).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

A. Degion, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329(2002).
[CrossRef]

Gaylord, T. K.

Ge, Z. B.

Z. B. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Grann, E. B.

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Kim, S. H.

Kuo, H. L.

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 0147617 (6 July 2006).

Lee, H. S.

Lee, K. D.

Lee, S. S.

Lezec, H. J.

A. Degion, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329(2002).
[CrossRef]

Long, L. L.

Maharam, M. G.

Mednikarov, B.

Moharam, M. G.

Nazarova, D.

Ordal, M. A.

Park, J. D.

Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
[CrossRef] [PubMed]

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17, 4436–4438 (2006).
[CrossRef]

Pommet, D. A.

Sharlandjiev, P.

Shieh, H. P. D.

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Ward, C. A.

Wu, S. T.

Z. B. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
[CrossRef]

Ye, Y.

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. S. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48, 5035–5039 (2009).
[CrossRef] [PubMed]

Yoon, Y. T.

Yu, L. B.

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 0147617 (6 July 2006).

Zhang, H.

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Zhou, Y.

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. S. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48, 5035–5039 (2009).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

A. Degion, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329(2002).
[CrossRef]

Z. B. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nanotechnology (1)

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17, 4436–4438 (2006).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Opt. Express (2)

Other (1)

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 0147617 (6 July 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the proposed structure. Device consists of three parts: a substrate, a dielectric grating, and a metal grating. The electric fields for the TE and TM polarizations are assumed to be of the directions as shown.

Fig. 2
Fig. 2

Schematic of the energy recycling system.

Fig. 3
Fig. 3

Transmission characteristics of the proposed structure for TM-polarized light: (a) the transmission characteristics and (b) the peak transmission and the FWHM. Structure parameters are Λ = 0.32 μm , h 1 = 0.08 μm , h 2 = 0.08 μm , f = 0.65 , and n z = 1.5 3.0 in steps of 0.1. The horizontal dotted line indicates the design value chosen for the dielectric material refractive index, n z = 2.4 .

Fig. 4
Fig. 4

Diffraction characteristics of the proposed structure for TE-polarized light: (a) the transmission characteristics and (b) the reflection characteristics. Structure parameters are Λ = 0.32 μm , h 1 = 0.08 μm , h 2 = 0.08 μm , f = 0.65 , and n z = 1.5 3.0 in steps of 0.1. The horizontal dotted line indicates the design value chosen for the dielectric material refractive index, n z = 2.4 .

Fig. 5
Fig. 5

Transmission characteristics of the proposed structure for TM-polarized light: (a) the transmission characteristics and (b) the peak transmission and the FWHM. Structure parameters are Λ = 0.32 μm , h 2 = 0.08 μm , f = 0.65 , n z = 2.4 , and h 1 = 0 0.12 μm in steps of 0.01 μm . The horizontal dotted line indicates the design value chosen for the dielectric grating depth, h 1 = 0.08 μm .

Fig. 6
Fig. 6

Diffraction characteristics of the proposed structure for TE-polarized light: (a) the transmission characteristics and (b) the reflection characteristics. Structure parameters are Λ = 0.32 μm , h 2 = 0.08 μm , f = 0.65 , n z = 2.4 , and h 1 = 0 0.12 μm in steps of 0.01 μm . The horizontal dotted line indicates the design value chosen for the dielectric grating depth, h 1 = 0.08 μm .

Fig. 7
Fig. 7

Diffraction characteristics of the proposed structure: (a) the transmission for TM-polarized light and (b) the reflection for TE-polarized light. Structure parameters are Λ = 0.32 μm , h 1 = 0.08 μm , f = 0.65 , n z = 2.4 , and h 2 = 0 0.1 μm in steps of 0.02 μm . The horizontal dotted line indicates the FWHM value when h 2 is chosen as 0.08 μm .

Fig. 8
Fig. 8

Diffraction characteristics of the proposed structure: (a) the transmission for TM-polarized light and (b) the reflection for TE-polarized light. Structure parameters are Λ = 0.32 μm , h 1 = 0.08 μm , h 2 = 0.08 μm , n z = 2.4 , and f = 0.5 0.7 in steps of 0.05. The horizontal dotted line indicates the FWHM value when f is chosen as 0.65.

Fig. 9
Fig. 9

Field distributions for 550 nm at normal incidence: (a) magnetic field for TM-polarized light and (b) electric field for TE-polarized light. Light is incident from the bottom of the subwavelength patterned grating. Lines depict schematically the profile of the dielectric grating and the metal grating. Horizontal and vertical axes measure the dimension of the subwavelength metal–dielectric grating.

Fig. 10
Fig. 10

Theoretical transfer characteristics of the designed color filters: (a) TM-polarized light and (b) TE-polarized light.

Fig. 11
Fig. 11

Reflection characteristics for TE-polarized light: (a)  Λ = 0.24 μm , (b)  Λ = 0.32 μm , and (c)  Λ = 0.40 μm .

Fig. 12
Fig. 12

Transmittance comparison between the proposed device and the one with a recycling system: (a) TM-polarized light and (b) TE-polarized light. Here R BE , G BE , and B BE are the transmission of the tricolor filters with TE polarization recycled three times. The inset is the magnification of the selected part for the plots in (b) to be labeled clearly.

Metrics