Abstract

We present a highly compact and cost-efficient Tm:YAP laser setup supporting single-frequency operation at a significantly high efficiency. The coupled-cavity concept was used to design a single- frequency laser operating at 1990nm. Single-frequency output power of 784mW was obtained when the absorbed pumping power was 2.4W. The optical-to-optical efficiency was 33%, and the slope efficiency was 52%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, “Frequency stabilization of Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
    [CrossRef]
  2. S. W. Henderson, J. M. Paul, and C. P. Hale, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
    [CrossRef]
  3. L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J.Zayhowski, ed., Vol.  83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.
  4. A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05 μm Ho:YLF MOPA system,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.
  5. U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
    [CrossRef]
  6. C. Svelto and I. Freitag, “Room-temperature Tm:YAG ring laser with 150 mW single-frequency output power at 2.02 μm,” Electron. Lett. 35, 152–153 (1999).
    [CrossRef]
  7. C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
    [CrossRef] [PubMed]
  8. Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters,” Appl. Phys. B 94, 81–84(2009).
    [CrossRef]
  9. C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
    [CrossRef]
  10. Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20(2010).
    [CrossRef]
  11. J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
    [CrossRef]
  12. C. Pedersen, P. L. Hansen, T. Skettrup, and P. Buchhave, “Diode-pumped single-frequency Nd:YVO4 laser with a set of coupled resonators,” Opt. Lett. 20, 1389–1391 (1995).
    [CrossRef] [PubMed]
  13. S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single frequency oscillation in a coupled cavity ND:GYLF laser by interferometric control of the cavity’s length,” Mag. Appl. Phys. Instrum. 16(1), 18–23 (2003).

2010 (2)

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20(2010).
[CrossRef]

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

2009 (2)

2003 (1)

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single frequency oscillation in a coupled cavity ND:GYLF laser by interferometric control of the cavity’s length,” Mag. Appl. Phys. Instrum. 16(1), 18–23 (2003).

2001 (1)

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

2000 (1)

1999 (1)

C. Svelto and I. Freitag, “Room-temperature Tm:YAG ring laser with 150 mW single-frequency output power at 2.02 μm,” Electron. Lett. 35, 152–153 (1999).
[CrossRef]

1997 (1)

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

1995 (1)

1993 (1)

S. W. Henderson, J. M. Paul, and C. P. Hale, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Armstrong, D.

A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05 μm Ho:YLF MOPA system,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.

Barnes, N. P.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Buchhave, P.

Budni, P. A.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J.Zayhowski, ed., Vol.  83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Chicklis, E. P.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J.Zayhowski, ed., Vol.  83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

de Matos, S. F. Paulo

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single frequency oscillation in a coupled cavity ND:GYLF laser by interferometric control of the cavity’s length,” Mag. Appl. Phys. Instrum. 16(1), 18–23 (2003).

Dergachev, A.

A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05 μm Ho:YLF MOPA system,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.

Dharamsi, A. N.

Drake, T. E.

A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05 μm Ho:YLF MOPA system,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.

Dubois, M.

A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05 μm Ho:YLF MOPA system,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.

Ezzo, K. M.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J.Zayhowski, ed., Vol.  83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Fitzgerald, C. M.

Freitag, I.

C. Svelto and I. Freitag, “Room-temperature Tm:YAG ring laser with 150 mW single-frequency output power at 2.02 μm,” Electron. Lett. 35, 152–153 (1999).
[CrossRef]

Gao, C.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20(2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters,” Appl. Phys. B 94, 81–84(2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef] [PubMed]

Gao, M.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20(2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters,” Appl. Phys. B 94, 81–84(2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef] [PubMed]

Hale, C. P.

S. W. Henderson, J. M. Paul, and C. P. Hale, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hansen, P. L.

Hara, H.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Henderson, S. W.

S. W. Henderson, J. M. Paul, and C. P. Hale, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hu, D. X.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Ketteridge, P. A.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J.Zayhowski, ed., Vol.  83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Koch, G. J.

Li, J.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Lin, Z.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20(2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters,” Appl. Phys. B 94, 81–84(2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef] [PubMed]

Lockard, G. E.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

McCarthy, J. C.

Mizutani, K.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Modlin, E. A.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Nagasawa, C.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Nakajima, H.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Niklaus, U. Wetter

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single frequency oscillation in a coupled cavity ND:GYLF laser by interferometric control of the cavity’s length,” Mag. Appl. Phys. Instrum. 16(1), 18–23 (2003).

Nogueira, E. C. Gesse

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single frequency oscillation in a coupled cavity ND:GYLF laser by interferometric control of the cavity’s length,” Mag. Appl. Phys. Instrum. 16(1), 18–23 (2003).

Paul, J. M.

S. W. Henderson, J. M. Paul, and C. P. Hale, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Pedersen, C.

Petros, M.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Pomeranz, L. A.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J.Zayhowski, ed., Vol.  83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Rines, D. M.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J.Zayhowski, ed., Vol.  83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Singh, U. N.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Skettrup, T.

Smith, A.

A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05 μm Ho:YLF MOPA system,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.

Suzuki, T.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Svelto, C.

C. Svelto and I. Freitag, “Room-temperature Tm:YAG ring laser with 150 mW single-frequency output power at 2.02 μm,” Electron. Lett. 35, 152–153 (1999).
[CrossRef]

Wang, R.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20(2010).
[CrossRef]

Weber, H.

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters,” Appl. Phys. B 94, 81–84(2009).
[CrossRef]

Williams-Byrda, J. A.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Yang, S. H.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Yu, J.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Zhang, H. Y.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20(2010).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef] [PubMed]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters,” Appl. Phys. B 94, 81–84(2009).
[CrossRef]

Zhao, C. M.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Zhu, L.

Appl. Opt. (1)

Appl. Phys. B (1)

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters,” Appl. Phys. B 94, 81–84(2009).
[CrossRef]

Electron. Lett. (1)

C. Svelto and I. Freitag, “Room-temperature Tm:YAG ring laser with 150 mW single-frequency output power at 2.02 μm,” Electron. Lett. 35, 152–153 (1999).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

S. W. Henderson, J. M. Paul, and C. P. Hale, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Laser Phys. Lett. (2)

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20(2010).
[CrossRef]

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm:YAP laser,” Laser Phys. Lett. 7, 203–205 (2010).
[CrossRef]

Mag. Appl. Phys. Instrum. (1)

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single frequency oscillation in a coupled cavity ND:GYLF laser by interferometric control of the cavity’s length,” Mag. Appl. Phys. Instrum. 16(1), 18–23 (2003).

Opt. Commun. (1)

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2 μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Other (2)

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J.Zayhowski, ed., Vol.  83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05 μm Ho:YLF MOPA system,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of single-frequency Tm:YAP coupled cavity.

Fig. 2
Fig. 2

Effective reflectivity of the coupled mirror set as a function of frequency detuning from the central frequency.

Fig. 3
Fig. 3

Fabry–Perot scan of the Tm:YAP lasers. (a) Total geometric cavity length is L = 22 mm , free-running, multimode oscillation. (b) A coupled cavity was used to enforce single-longitudinal-mode oscillation; the total geometric cavity length is L = 24.8 mm .

Fig. 4
Fig. 4

Output power versus the absorbed pumping power of free-running and single-frequency Tm:YAP lasers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R eff = ( R 2 R 3 ) 2 + 4 R 2 R 3 sin 2 ( 2 π d / λ ) ( 1 R 2 R 3 ) 2 + 4 R 2 R 3 sin 2 ( 2 π d / λ ) ,

Metrics