Abstract

The applicability of digital speckle pattern interferometry (DSPI) to the analysis of surface corrosion processes has been evaluated by studying the evolution of an Fe surface immersed in sulfuric acid. This work describes the analysis process required to obtain quantitative information about the corrosion process. It has been possible to evaluate the corrosion rate, and the results agree with those derived from the weight loss method. In addition, a two-dimensional analysis has been applied, showing that DSPI measurements can be used to extract information about the corrosion rate at any region of the surface.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Huang, F. Jin, and F. P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique,” Opt. Lasers Eng. 31, 371–380 (1999).
    [CrossRef]
  2. J. P. Ying, F. Liu, P. P. Ho, and R. R. Alfano, “Nondestructive evaluation of incipient corrosion in a metal beneath paint by second-harmonic tomography,” Opt. Lett. 25, 1189–1191(2000).
    [CrossRef]
  3. K. Habib and F. Al-Sabati, “Interferometric sensor for electrochemical studies of metallic alloys in aqueous solution,” Opt. Rev. 4, 324–328 (1997).
    [CrossRef]
  4. K. Habib, “In situ measurements of oxide film growth on aluminium samples by holographic interferometry,” Corr. Sci. 43, 449–455 (2001).
    [CrossRef]
  5. X. Yang, S. Chen, C. Wang, and L. Li, “Inline digital holography for the study of dynamic processes of electrochemical reaction,” Electrochem. Comm. 6, 643–647 (2004).
    [CrossRef]
  6. C. Wang, S. Chen, X. Yang, and L. Li, “Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography,” Electrochem. Comm. 6, 1009–1015(2004).
    [CrossRef]
  7. L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
    [CrossRef]
  8. N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
    [CrossRef]
  9. Y. Gao, Y. Ou, and M. Chen, “Measurements of the off-plane displacement of carbon steel corrosion with twin-object-beam electronic speckle interferometry,” Optik 121, 1756–1760(2010).
    [CrossRef]
  10. P. K. Rastogi, Digital Speckle-Pattern Interferometry and Related Techniques (Wiley, 2001).
  11. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  12. N. Andrés, P. Arroyo, H. Hinrichs, and M. Quintanilla, “Digital speckle-pattern interferometry as a full-field fluid-velocity technique,” Opt. Lett. 24, 575–577 (1999).
    [CrossRef]
  13. S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
    [CrossRef]
  14. G. Gülker and K. D. Hinsch, “Detection of surface microstructure changes by electronic speckle pattern interferometry,” Opt. Lasers Eng. 26, 165–178 (1997).
    [CrossRef]
  15. F. Jin and F. P. Chiang, “ESPI and digital speckle correlation applied to inspection of crevice corrosion on aging aircraft,” Res. Nondest. Eval. 10, 63–73 (1998).
    [CrossRef]
  16. J. Burke, H. Helmers, C. Kunze, and V. Wilkens, “Speckle intensity and phase gradients: influence on fringe quality in spatial phase shifting ESPI systems,” Opt. Commun. 152, 144–152 (1998).
    [CrossRef]
  17. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160(1982).
    [CrossRef]
  18. J. Lobera, N. Andrés, and M. P. Arroyo, “Digital speckle pattern interferometry as a holographic velocimetry technique,” Meas. Sci. Technol. 15, 718–724 (2004).
    [CrossRef]
  19. ASTM, “Standard test methods for corrosivity of water in the absence of heat transfer (weight loss methods),” ASTM D2688-05 (ASTM, 2005).
    [CrossRef]

2010 (2)

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

Y. Gao, Y. Ou, and M. Chen, “Measurements of the off-plane displacement of carbon steel corrosion with twin-object-beam electronic speckle interferometry,” Optik 121, 1756–1760(2010).
[CrossRef]

2008 (1)

N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
[CrossRef]

2005 (1)

S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
[CrossRef]

2004 (3)

X. Yang, S. Chen, C. Wang, and L. Li, “Inline digital holography for the study of dynamic processes of electrochemical reaction,” Electrochem. Comm. 6, 643–647 (2004).
[CrossRef]

C. Wang, S. Chen, X. Yang, and L. Li, “Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography,” Electrochem. Comm. 6, 1009–1015(2004).
[CrossRef]

J. Lobera, N. Andrés, and M. P. Arroyo, “Digital speckle pattern interferometry as a holographic velocimetry technique,” Meas. Sci. Technol. 15, 718–724 (2004).
[CrossRef]

2001 (1)

K. Habib, “In situ measurements of oxide film growth on aluminium samples by holographic interferometry,” Corr. Sci. 43, 449–455 (2001).
[CrossRef]

2000 (1)

1999 (2)

P. S. Huang, F. Jin, and F. P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique,” Opt. Lasers Eng. 31, 371–380 (1999).
[CrossRef]

N. Andrés, P. Arroyo, H. Hinrichs, and M. Quintanilla, “Digital speckle-pattern interferometry as a full-field fluid-velocity technique,” Opt. Lett. 24, 575–577 (1999).
[CrossRef]

1998 (2)

F. Jin and F. P. Chiang, “ESPI and digital speckle correlation applied to inspection of crevice corrosion on aging aircraft,” Res. Nondest. Eval. 10, 63–73 (1998).
[CrossRef]

J. Burke, H. Helmers, C. Kunze, and V. Wilkens, “Speckle intensity and phase gradients: influence on fringe quality in spatial phase shifting ESPI systems,” Opt. Commun. 152, 144–152 (1998).
[CrossRef]

1997 (2)

K. Habib and F. Al-Sabati, “Interferometric sensor for electrochemical studies of metallic alloys in aqueous solution,” Opt. Rev. 4, 324–328 (1997).
[CrossRef]

G. Gülker and K. D. Hinsch, “Detection of surface microstructure changes by electronic speckle pattern interferometry,” Opt. Lasers Eng. 26, 165–178 (1997).
[CrossRef]

1982 (1)

Alfano, R. R.

Al-Sabati, F.

K. Habib and F. Al-Sabati, “Interferometric sensor for electrochemical studies of metallic alloys in aqueous solution,” Opt. Rev. 4, 324–328 (1997).
[CrossRef]

Andrés, J. M.

N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
[CrossRef]

Andrés, N.

N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
[CrossRef]

S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
[CrossRef]

J. Lobera, N. Andrés, and M. P. Arroyo, “Digital speckle pattern interferometry as a holographic velocimetry technique,” Meas. Sci. Technol. 15, 718–724 (2004).
[CrossRef]

N. Andrés, P. Arroyo, H. Hinrichs, and M. Quintanilla, “Digital speckle-pattern interferometry as a full-field fluid-velocity technique,” Opt. Lett. 24, 575–577 (1999).
[CrossRef]

Angurel, L. A.

N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
[CrossRef]

S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
[CrossRef]

Arroyo, M. P.

N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
[CrossRef]

S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
[CrossRef]

J. Lobera, N. Andrés, and M. P. Arroyo, “Digital speckle pattern interferometry as a holographic velocimetry technique,” Meas. Sci. Technol. 15, 718–724 (2004).
[CrossRef]

Arroyo, P.

Bona, M. T.

N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
[CrossRef]

Burke, J.

J. Burke, H. Helmers, C. Kunze, and V. Wilkens, “Speckle intensity and phase gradients: influence on fringe quality in spatial phase shifting ESPI systems,” Opt. Commun. 152, 144–152 (1998).
[CrossRef]

Chen, M.

Y. Gao, Y. Ou, and M. Chen, “Measurements of the off-plane displacement of carbon steel corrosion with twin-object-beam electronic speckle interferometry,” Optik 121, 1756–1760(2010).
[CrossRef]

Chen, S.

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

C. Wang, S. Chen, X. Yang, and L. Li, “Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography,” Electrochem. Comm. 6, 1009–1015(2004).
[CrossRef]

X. Yang, S. Chen, C. Wang, and L. Li, “Inline digital holography for the study of dynamic processes of electrochemical reaction,” Electrochem. Comm. 6, 643–647 (2004).
[CrossRef]

Chiang, F. P.

P. S. Huang, F. Jin, and F. P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique,” Opt. Lasers Eng. 31, 371–380 (1999).
[CrossRef]

F. Jin and F. P. Chiang, “ESPI and digital speckle correlation applied to inspection of crevice corrosion on aging aircraft,” Res. Nondest. Eval. 10, 63–73 (1998).
[CrossRef]

Gao, Y.

Y. Gao, Y. Ou, and M. Chen, “Measurements of the off-plane displacement of carbon steel corrosion with twin-object-beam electronic speckle interferometry,” Optik 121, 1756–1760(2010).
[CrossRef]

Gülker, G.

G. Gülker and K. D. Hinsch, “Detection of surface microstructure changes by electronic speckle pattern interferometry,” Opt. Lasers Eng. 26, 165–178 (1997).
[CrossRef]

Habib, K.

K. Habib, “In situ measurements of oxide film growth on aluminium samples by holographic interferometry,” Corr. Sci. 43, 449–455 (2001).
[CrossRef]

K. Habib and F. Al-Sabati, “Interferometric sensor for electrochemical studies of metallic alloys in aqueous solution,” Opt. Rev. 4, 324–328 (1997).
[CrossRef]

Helmers, H.

J. Burke, H. Helmers, C. Kunze, and V. Wilkens, “Speckle intensity and phase gradients: influence on fringe quality in spatial phase shifting ESPI systems,” Opt. Commun. 152, 144–152 (1998).
[CrossRef]

Hinrichs, H.

Hinsch, K. D.

G. Gülker and K. D. Hinsch, “Detection of surface microstructure changes by electronic speckle pattern interferometry,” Opt. Lasers Eng. 26, 165–178 (1997).
[CrossRef]

Ho, P. P.

Huang, P. S.

P. S. Huang, F. Jin, and F. P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique,” Opt. Lasers Eng. 31, 371–380 (1999).
[CrossRef]

Ina, H.

Jin, F.

P. S. Huang, F. Jin, and F. P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique,” Opt. Lasers Eng. 31, 371–380 (1999).
[CrossRef]

F. Jin and F. P. Chiang, “ESPI and digital speckle correlation applied to inspection of crevice corrosion on aging aircraft,” Res. Nondest. Eval. 10, 63–73 (1998).
[CrossRef]

Kobayashi, S.

Kunze, C.

J. Burke, H. Helmers, C. Kunze, and V. Wilkens, “Speckle intensity and phase gradients: influence on fringe quality in spatial phase shifting ESPI systems,” Opt. Commun. 152, 144–152 (1998).
[CrossRef]

Lera, F.

S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
[CrossRef]

Li, L.

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

C. Wang, S. Chen, X. Yang, and L. Li, “Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography,” Electrochem. Comm. 6, 1009–1015(2004).
[CrossRef]

X. Yang, S. Chen, C. Wang, and L. Li, “Inline digital holography for the study of dynamic processes of electrochemical reaction,” Electrochem. Comm. 6, 643–647 (2004).
[CrossRef]

Liu, F.

Lobera, J.

S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
[CrossRef]

J. Lobera, N. Andrés, and M. P. Arroyo, “Digital speckle pattern interferometry as a holographic velocimetry technique,” Meas. Sci. Technol. 15, 718–724 (2004).
[CrossRef]

Meng, F.

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

Ou, Y.

Y. Gao, Y. Ou, and M. Chen, “Measurements of the off-plane displacement of carbon steel corrosion with twin-object-beam electronic speckle interferometry,” Optik 121, 1756–1760(2010).
[CrossRef]

Quintanilla, M.

Rastogi, P. K.

P. K. Rastogi, Digital Speckle-Pattern Interferometry and Related Techniques (Wiley, 2001).

Recuero, S.

N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
[CrossRef]

S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
[CrossRef]

Takeda, M.

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, 1979).

Wang, C.

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

C. Wang, S. Chen, X. Yang, and L. Li, “Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography,” Electrochem. Comm. 6, 1009–1015(2004).
[CrossRef]

X. Yang, S. Chen, C. Wang, and L. Li, “Inline digital holography for the study of dynamic processes of electrochemical reaction,” Electrochem. Comm. 6, 643–647 (2004).
[CrossRef]

Wang, J.

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

Wang, L.

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

Wilkens, V.

J. Burke, H. Helmers, C. Kunze, and V. Wilkens, “Speckle intensity and phase gradients: influence on fringe quality in spatial phase shifting ESPI systems,” Opt. Commun. 152, 144–152 (1998).
[CrossRef]

Yang, X.

C. Wang, S. Chen, X. Yang, and L. Li, “Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography,” Electrochem. Comm. 6, 1009–1015(2004).
[CrossRef]

X. Yang, S. Chen, C. Wang, and L. Li, “Inline digital holography for the study of dynamic processes of electrochemical reaction,” Electrochem. Comm. 6, 643–647 (2004).
[CrossRef]

Ying, J. P.

Yuan, B.

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

Corr. Sci. (2)

K. Habib, “In situ measurements of oxide film growth on aluminium samples by holographic interferometry,” Corr. Sci. 43, 449–455 (2001).
[CrossRef]

N. Andrés, S. Recuero, M. P. Arroyo, M. T. Bona, J. M. Andrés, and L. A. Angurel, “Fast visualization of corrosion process using digital speckle photography,” Corr. Sci. 50, 2965–2971(2008).
[CrossRef]

Electrochem. Comm. (2)

X. Yang, S. Chen, C. Wang, and L. Li, “Inline digital holography for the study of dynamic processes of electrochemical reaction,” Electrochem. Comm. 6, 643–647 (2004).
[CrossRef]

C. Wang, S. Chen, X. Yang, and L. Li, “Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography,” Electrochem. Comm. 6, 1009–1015(2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Serb Chem. Soc. (1)

L. Wang, S. Chen, B. Yuan, F. Meng, J. Wang, C. Wang, and L. Li, “Digital holographic reconstruction detection of localized corrosion arising from scratches,” J. Serb Chem. Soc. 75, 505–512 (2010).
[CrossRef]

Meas Sci. Technol. (1)

S. Recuero, N. Andrés, J. Lobera, M. P. Arroyo, L. A. Angurel, and F. Lera, “Application of DSPI to detect inhomogeneous heating on superconducting ceramics,” Meas Sci. Technol. 16, 1030–1036 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

J. Lobera, N. Andrés, and M. P. Arroyo, “Digital speckle pattern interferometry as a holographic velocimetry technique,” Meas. Sci. Technol. 15, 718–724 (2004).
[CrossRef]

Opt. Commun. (1)

J. Burke, H. Helmers, C. Kunze, and V. Wilkens, “Speckle intensity and phase gradients: influence on fringe quality in spatial phase shifting ESPI systems,” Opt. Commun. 152, 144–152 (1998).
[CrossRef]

Opt. Lasers Eng. (2)

P. S. Huang, F. Jin, and F. P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique,” Opt. Lasers Eng. 31, 371–380 (1999).
[CrossRef]

G. Gülker and K. D. Hinsch, “Detection of surface microstructure changes by electronic speckle pattern interferometry,” Opt. Lasers Eng. 26, 165–178 (1997).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

K. Habib and F. Al-Sabati, “Interferometric sensor for electrochemical studies of metallic alloys in aqueous solution,” Opt. Rev. 4, 324–328 (1997).
[CrossRef]

Optik (1)

Y. Gao, Y. Ou, and M. Chen, “Measurements of the off-plane displacement of carbon steel corrosion with twin-object-beam electronic speckle interferometry,” Optik 121, 1756–1760(2010).
[CrossRef]

Res. Nondest. Eval. (1)

F. Jin and F. P. Chiang, “ESPI and digital speckle correlation applied to inspection of crevice corrosion on aging aircraft,” Res. Nondest. Eval. 10, 63–73 (1998).
[CrossRef]

Other (3)

ASTM, “Standard test methods for corrosivity of water in the absence of heat transfer (weight loss methods),” ASTM D2688-05 (ASTM, 2005).
[CrossRef]

P. K. Rastogi, Digital Speckle-Pattern Interferometry and Related Techniques (Wiley, 2001).

C. M. Vest, Holographic Interferometry (Wiley, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Specklegram with SPS modulation, (b) intensity of specklegram Fourier transform.

Fig. 2
Fig. 2

(a) Optical imaging setup for DSPI recording system, (b) sample area detail.

Fig. 3
Fig. 3

(a) Imaged object and (b)–(e) corrected DSPI phase difference maps of a Fe sample partially immersed in a 0.5 M ( 1 N ) sulfuric acid solution: (b) after 15 s , (c) after 120 s , (d) after 240 s , and (e) after 360 s . In all cases, the reference corresponds to the initial state.

Fig. 4
Fig. 4

2D maps of corrosion depth surface after (a)  15 s , (b)  120 s , (c)  240 s and (d)  360 s .

Fig. 5
Fig. 5

Time evolution of the corrosion layer thickness at point A and B. For comparison, the evolution of the mean value calculated over the total corroded surface is also presented.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) 1 + cos ( Δ ϕ ( x , y ) ) .
Δ ϕ ( x , y ) = 2 π λ [ L x ( x , y ) ( sin θ i sin θ o ) + L z ( x , y ) ( cos θ i + cos θ o ) ] .
L z ( x , y ) = Δ ϕ ( x , y ) λ 2 π ( cos θ i + cos θ o ) .

Metrics