Abstract

We studied the time-resolved polarization-dependent fluorescence spectroscopy of receptor-targeted contrast agents (Cybesin and Cytate) bound with prostate cancer cells in prostate tissue. An analytical model dealing with highly viscous tissue media was developed and used to investigate the rotation times and fluorescence anisotropies of the receptor-targeted contrast agents in prostate tissue. The differences of rotation times and fluorescence anisotropies were observed for Cybesin (Cytate) in cancerous and normal prostate tissues, which reflect changes of the microstructures of cancerous and normal tissues and their different bound affinity with contrast agents. The preferential uptake of Cytate (Cybesin) in cancerous tissue was used to image and distinguish cancerous tissue areas from normal tissue areas. The fluorescence polarization difference imaging technique was used to enhance the image contrast between the cancerous and normal tissue areas. This research may help to introduce a new optical approach and criteria for prostate cancer detection.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
    [CrossRef] [PubMed]
  2. R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
    [CrossRef]
  3. D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
    [CrossRef] [PubMed]
  4. Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Differences of time-resolved near infrared spectral wing emission and imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
    [CrossRef]
  5. K. C. Smith, The Science of Photobiology, 2nd ed.(Plenum, 1989).
  6. D. J. Dean and B. J. Korte, “A new federal institute focuses on biomedical imaging and bioengineering,” Opt. Photon. News 14(10), 38–42 (2003).
    [CrossRef]
  7. J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
    [CrossRef] [PubMed]
  8. J. C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.-C. Schaer, and M. Gugger, “Bombesin receptor subtypes in human cancers: detection with the universal radioligand I−[D−TYR6, β−ALA11, PHE13, NLE14125] bombesin(6-14),” Clin. Cancer Res. 8, 1139–1146 (2002).
    [PubMed]
  9. J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. A. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53, 50–59 (2002).
    [CrossRef] [PubMed]
  10. Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
    [PubMed]
  11. Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
    [CrossRef] [PubMed]
  12. D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical,” J. Urol. 111, 58–64 (1974).
    [PubMed]
  13. G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
    [CrossRef]
  14. G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
    [CrossRef]
  15. R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. NY Acad. Sci. 158, 361–375 (1969).
    [CrossRef]
  16. D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467–9471 (2000).
    [CrossRef] [PubMed]
  17. J. P. Rieu and Y. Sawada, “Hydrodynamics and cell motion during the rounding of two dimensional hydra cell aggregates,” Eur. Phys. J. B 27, 167–172 (2002).
    [CrossRef]
  18. F. Pellegrino, P. Sekuler, and R. R. Alfano, “Picosecond fluorescence kinetics and polarization anisotropy from anthocyanin pigment,” Photobiochem. Photobiophys. 2, 15–20 (1981).
  19. M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDs, http://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.
  20. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys. 35, R61 –R76 (2002).
    [CrossRef]
  21. S. A. Tatarkova, A. K. Verma, D. A. Berk, and C. J. Lloyd, “Quantitative fluorescence microscopy of macromolecules in gel and biological tissue,” Phys. Med. Biol. 50, 5759–5768(2005).
    [CrossRef] [PubMed]
  22. A. Shmilovici, “Incomplete tumor volume reduction may improve cancer prognosis,” Med. Hypoth. 68, 1236–1239 (2007).
    [CrossRef]
  23. W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
    [CrossRef]
  24. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  25. D. Theodorescu and T. L. Krupski, “Prostate cancer—biology, diagnosis, pathology, staging, and natural history,” http://emedicine.medscape.com/article/458011-overview (2009).
  26. C. H. Huh, M. S. Bhutani, E. B. Farfan, and W. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Physiol. Meas. 24, N15–N22 (2003).
    [CrossRef] [PubMed]
  27. W. Wang, J. H. Ali, R. R. Alfano, J. H. Vitenson, and J. M. Lombardo, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288–293 (2003).
    [CrossRef]
  28. Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, “Changes of collagen and NADH in human cancerous and normal prostate tissues studied using fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
    [CrossRef] [PubMed]

2010 (1)

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, “Changes of collagen and NADH in human cancerous and normal prostate tissues studied using fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef] [PubMed]

2009 (2)

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Differences of time-resolved near infrared spectral wing emission and imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

2008 (1)

2007 (1)

A. Shmilovici, “Incomplete tumor volume reduction may improve cancer prognosis,” Med. Hypoth. 68, 1236–1239 (2007).
[CrossRef]

2005 (2)

S. A. Tatarkova, A. K. Verma, D. A. Berk, and C. J. Lloyd, “Quantitative fluorescence microscopy of macromolecules in gel and biological tissue,” Phys. Med. Biol. 50, 5759–5768(2005).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

2003 (3)

D. J. Dean and B. J. Korte, “A new federal institute focuses on biomedical imaging and bioengineering,” Opt. Photon. News 14(10), 38–42 (2003).
[CrossRef]

C. H. Huh, M. S. Bhutani, E. B. Farfan, and W. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Physiol. Meas. 24, N15–N22 (2003).
[CrossRef] [PubMed]

W. Wang, J. H. Ali, R. R. Alfano, J. H. Vitenson, and J. M. Lombardo, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288–293 (2003).
[CrossRef]

2002 (4)

J. C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.-C. Schaer, and M. Gugger, “Bombesin receptor subtypes in human cancers: detection with the universal radioligand I−[D−TYR6, β−ALA11, PHE13, NLE14125] bombesin(6-14),” Clin. Cancer Res. 8, 1139–1146 (2002).
[PubMed]

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. A. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53, 50–59 (2002).
[CrossRef] [PubMed]

J. P. Rieu and Y. Sawada, “Hydrodynamics and cell motion during the rounding of two dimensional hydra cell aggregates,” Eur. Phys. J. B 27, 167–172 (2002).
[CrossRef]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys. 35, R61 –R76 (2002).
[CrossRef]

2001 (1)

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

2000 (1)

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467–9471 (2000).
[CrossRef] [PubMed]

1997 (1)

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

1986 (1)

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

1984 (1)

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

1981 (1)

F. Pellegrino, P. Sekuler, and R. R. Alfano, “Picosecond fluorescence kinetics and polarization anisotropy from anthocyanin pigment,” Photobiochem. Photobiophys. 2, 15–20 (1981).

1977 (1)

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

1976 (1)

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

1974 (1)

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical,” J. Urol. 111, 58–64 (1974).
[PubMed]

1969 (1)

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. NY Acad. Sci. 158, 361–375 (1969).
[CrossRef]

Abrahamsson, P. A.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. A. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53, 50–59 (2002).
[CrossRef] [PubMed]

Achilefu, S.

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Alfano, M.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Alfano, M. A.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Alfano, R. R.

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, “Changes of collagen and NADH in human cancerous and normal prostate tissues studied using fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Differences of time-resolved near infrared spectral wing emission and imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

W. Wang, J. H. Ali, R. R. Alfano, J. H. Vitenson, and J. M. Lombardo, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288–293 (2003).
[CrossRef]

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

F. Pellegrino, P. Sekuler, and R. R. Alfano, “Picosecond fluorescence kinetics and polarization anisotropy from anthocyanin pigment,” Photobiochem. Photobiophys. 2, 15–20 (1981).

Ali, J.

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

Ali, J. H.

W. Wang, J. H. Ali, R. R. Alfano, J. H. Vitenson, and J. M. Lombardo, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288–293 (2003).
[CrossRef]

Berk, D. A.

S. A. Tatarkova, A. K. Verma, D. A. Berk, and C. J. Lloyd, “Quantitative fluorescence microscopy of macromolecules in gel and biological tissue,” Phys. Med. Biol. 50, 5759–5768(2005).
[CrossRef] [PubMed]

Beysens, D. A.

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467–9471 (2000).
[CrossRef] [PubMed]

Bhutani, M. S.

C. H. Huh, M. S. Bhutani, E. B. Farfan, and W. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Physiol. Meas. 24, N15–N22 (2003).
[CrossRef] [PubMed]

Bjartell, A.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. A. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53, 50–59 (2002).
[CrossRef] [PubMed]

Bolch, W. E.

C. H. Huh, M. S. Bhutani, E. B. Farfan, and W. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Physiol. Meas. 24, N15–N22 (2003).
[CrossRef] [PubMed]

Bugaj, J. E.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Comelli, D.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys. 35, R61 –R76 (2002).
[CrossRef]

Cordero, J.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Cubeddu, R.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys. 35, R61 –R76 (2002).
[CrossRef]

D’Andrea, C.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys. 35, R61 –R76 (2002).
[CrossRef]

Das, B. B.

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Differences of time-resolved near infrared spectral wing emission and imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef] [PubMed]

Dean, D. J.

D. J. Dean and B. J. Korte, “A new federal institute focuses on biomedical imaging and bioengineering,” Opt. Photon. News 14(10), 38–42 (2003).
[CrossRef]

Demos, S. G.

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

Dizeyi, N.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. A. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53, 50–59 (2002).
[CrossRef] [PubMed]

Dorshow, R. B.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Dresner, M. A.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDs, http://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Ehman, R. L.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDs, http://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Farfan, E. B.

C. H. Huh, M. S. Bhutani, E. B. Farfan, and W. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Physiol. Meas. 24, N15–N22 (2003).
[CrossRef] [PubMed]

Fleming, G. R.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Foresti, M.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Forgacs, G.

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467–9471 (2000).
[CrossRef] [PubMed]

Gadaleanu, V.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. A. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53, 50–59 (2002).
[CrossRef] [PubMed]

Glazier, J. A.

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467–9471 (2000).
[CrossRef] [PubMed]

Gleason, D. F.

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical,” J. Urol. 111, 58–64 (1974).
[PubMed]

Gugger, M.

J. C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.-C. Schaer, and M. Gugger, “Bombesin receptor subtypes in human cancers: detection with the universal radioligand I−[D−TYR6, β−ALA11, PHE13, NLE14125] bombesin(6-14),” Clin. Cancer Res. 8, 1139–1146 (2002).
[PubMed]

Hansson, J.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. A. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53, 50–59 (2002).
[CrossRef] [PubMed]

Hao, Y.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
[CrossRef] [PubMed]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Huh, C. H.

C. H. Huh, M. S. Bhutani, E. B. Farfan, and W. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Physiol. Meas. 24, N15–N22 (2003).
[CrossRef] [PubMed]

Jemal, A.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
[CrossRef] [PubMed]

Korte, B. J.

D. J. Dean and B. J. Korte, “A new federal institute focuses on biomedical imaging and bioengineering,” Opt. Photon. News 14(10), 38–42 (2003).
[CrossRef]

Krupski, T. L.

D. Theodorescu and T. L. Krupski, “Prostate cancer—biology, diagnosis, pathology, staging, and natural history,” http://emedicine.medscape.com/article/458011-overview (2009).

Kruse, S. A.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDs, http://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Lloyd, C. J.

S. A. Tatarkova, A. K. Verma, D. A. Berk, and C. J. Lloyd, “Quantitative fluorescence microscopy of macromolecules in gel and biological tissue,” Phys. Med. Biol. 50, 5759–5768(2005).
[CrossRef] [PubMed]

Lombardo, J. M.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

W. Wang, J. H. Ali, R. R. Alfano, J. H. Vitenson, and J. M. Lombardo, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288–293 (2003).
[CrossRef]

Lonyo, F.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Mellinger, G. T.

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical,” J. Urol. 111, 58–64 (1974).
[PubMed]

Morris, J. M.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Pellegrino, F.

F. Pellegrino, P. Sekuler, and R. R. Alfano, “Picosecond fluorescence kinetics and polarization anisotropy from anthocyanin pigment,” Photobiochem. Photobiophys. 2, 15–20 (1981).

Peters, S.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

Porter, G.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Pu, Y.

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, “Changes of collagen and NADH in human cancerous and normal prostate tissues studied using fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Differences of time-resolved near infrared spectral wing emission and imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

Rajagopalan, R.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Reubi, J. C.

J. C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.-C. Schaer, and M. Gugger, “Bombesin receptor subtypes in human cancers: detection with the universal radioligand I−[D−TYR6, β−ALA11, PHE13, NLE14125] bombesin(6-14),” Clin. Cancer Res. 8, 1139–1146 (2002).
[PubMed]

Rieu, J. P.

J. P. Rieu and Y. Sawada, “Hydrodynamics and cell motion during the rounding of two dimensional hydra cell aggregates,” Eur. Phys. J. B 27, 167–172 (2002).
[CrossRef]

Robinson, G. W.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Rossman, P. J.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDs, http://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Sadkowski, P. J.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Sawada, Y.

J. P. Rieu and Y. Sawada, “Hydrodynamics and cell motion during the rounding of two dimensional hydra cell aggregates,” Eur. Phys. J. B 27, 167–172 (2002).
[CrossRef]

Sawczuk, I.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

Schaer, J.-C.

J. C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.-C. Schaer, and M. Gugger, “Bombesin receptor subtypes in human cancers: detection with the universal radioligand I−[D−TYR6, β−ALA11, PHE13, NLE14125] bombesin(6-14),” Clin. Cancer Res. 8, 1139–1146 (2002).
[PubMed]

Schmuckli-Maurer, J.

J. C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.-C. Schaer, and M. Gugger, “Bombesin receptor subtypes in human cancers: detection with the universal radioligand I−[D−TYR6, β−ALA11, PHE13, NLE14125] bombesin(6-14),” Clin. Cancer Res. 8, 1139–1146 (2002).
[PubMed]

Sekuler, P.

F. Pellegrino, P. Sekuler, and R. R. Alfano, “Picosecond fluorescence kinetics and polarization anisotropy from anthocyanin pigment,” Photobiochem. Photobiophys. 2, 15–20 (1981).

Shmilovici, A.

A. Shmilovici, “Incomplete tumor volume reduction may improve cancer prognosis,” Med. Hypoth. 68, 1236–1239 (2007).
[CrossRef]

Siegel, R.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
[CrossRef] [PubMed]

Smith, K. C.

K. C. Smith, The Science of Photobiology, 2nd ed.(Plenum, 1989).

Spencer, R. D.

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. NY Acad. Sci. 158, 361–375 (1969).
[CrossRef]

Tang, G. C.

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, “Changes of collagen and NADH in human cancerous and normal prostate tissues studied using fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

Taroni, P.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys. 35, R61 –R76 (2002).
[CrossRef]

Tata, D.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Tata, D. B.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Tatarkova, S. A.

S. A. Tatarkova, A. K. Verma, D. A. Berk, and C. J. Lloyd, “Quantitative fluorescence microscopy of macromolecules in gel and biological tissue,” Phys. Med. Biol. 50, 5759–5768(2005).
[CrossRef] [PubMed]

Theodorescu, D.

D. Theodorescu and T. L. Krupski, “Prostate cancer—biology, diagnosis, pathology, staging, and natural history,” http://emedicine.medscape.com/article/458011-overview (2009).

Thun, M.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
[CrossRef] [PubMed]

Tomashefsky, P.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Tredwell, C. J.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Valentini, G.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys. 35, R61 –R76 (2002).
[CrossRef]

Verma, A. K.

S. A. Tatarkova, A. K. Verma, D. A. Berk, and C. J. Lloyd, “Quantitative fluorescence microscopy of macromolecules in gel and biological tissue,” Phys. Med. Biol. 50, 5759–5768(2005).
[CrossRef] [PubMed]

Vitenson, J. H.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

W. Wang, J. H. Ali, R. R. Alfano, J. H. Vitenson, and J. M. Lombardo, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288–293 (2003).
[CrossRef]

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Wang, W.

W. Wang, J. H. Ali, R. R. Alfano, J. H. Vitenson, and J. M. Lombardo, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288–293 (2003).
[CrossRef]

Wang, W. B.

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, “Changes of collagen and NADH in human cancerous and normal prostate tissues studied using fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Differences of time-resolved near infrared spectral wing emission and imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, S. Achilefu, and R. R. Alfano, “Time-resolved fluorescence polarization dynamics and optical imaging of Cytate: a prostate cancer receptor-targeted contrast agent,” Appl. Opt. 47, 2281–2289 (2008).
[CrossRef] [PubMed]

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

Ward, E.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
[CrossRef] [PubMed]

Weber, G.

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. NY Acad. Sci. 158, 361–375 (1969).
[CrossRef]

Wenger, S.

J. C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.-C. Schaer, and M. Gugger, “Bombesin receptor subtypes in human cancers: detection with the universal radioligand I−[D−TYR6, β−ALA11, PHE13, NLE14125] bombesin(6-14),” Clin. Cancer Res. 8, 1139–1146 (2002).
[PubMed]

Xu, J.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
[CrossRef] [PubMed]

Zeng, F.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Ann. NY Acad. Sci. (1)

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer,” Ann. NY Acad. Sci. 158, 361–375 (1969).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (1)

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

CA Cancer J. Clin. (1)

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59, 225–247 (2009).
[CrossRef] [PubMed]

Chem. Phys. (1)

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Clin. Cancer Res. (1)

J. C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.-C. Schaer, and M. Gugger, “Bombesin receptor subtypes in human cancers: detection with the universal radioligand I−[D−TYR6, β−ALA11, PHE13, NLE14125] bombesin(6-14),” Clin. Cancer Res. 8, 1139–1146 (2002).
[PubMed]

Eur. Phys. J. B (1)

J. P. Rieu and Y. Sawada, “Hydrodynamics and cell motion during the rounding of two dimensional hydra cell aggregates,” Eur. Phys. J. B 27, 167–172 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Wang, J. H. Ali, R. R. Alfano, J. H. Vitenson, and J. M. Lombardo, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288–293 (2003).
[CrossRef]

J. Biomed. Opt. (2)

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, “Changes of collagen and NADH in human cancerous and normal prostate tissues studied using fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef] [PubMed]

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

J. Phys. D: Appl. Phys. (1)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys. 35, R61 –R76 (2002).
[CrossRef]

J. Urol. (1)

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical,” J. Urol. 111, 58–64 (1974).
[PubMed]

Med. Hypoth. (1)

A. Shmilovici, “Incomplete tumor volume reduction may improve cancer prognosis,” Med. Hypoth. 68, 1236–1239 (2007).
[CrossRef]

Opt. Commun. (2)

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Differences of time-resolved near infrared spectral wing emission and imaging of human cancerous and normal prostate tissues,” Opt. Commun. 282, 4308–4314 (2009).
[CrossRef]

Opt. Photon. News (1)

D. J. Dean and B. J. Korte, “A new federal institute focuses on biomedical imaging and bioengineering,” Opt. Photon. News 14(10), 38–42 (2003).
[CrossRef]

Photobiochem. Photobiophys. (1)

F. Pellegrino, P. Sekuler, and R. R. Alfano, “Picosecond fluorescence kinetics and polarization anisotropy from anthocyanin pigment,” Photobiochem. Photobiophys. 2, 15–20 (1981).

Phys. Med. Biol. (1)

S. A. Tatarkova, A. K. Verma, D. A. Berk, and C. J. Lloyd, “Quantitative fluorescence microscopy of macromolecules in gel and biological tissue,” Phys. Med. Biol. 50, 5759–5768(2005).
[CrossRef] [PubMed]

Physiol. Meas. (1)

C. H. Huh, M. S. Bhutani, E. B. Farfan, and W. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Physiol. Meas. 24, N15–N22 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467–9471 (2000).
[CrossRef] [PubMed]

Prostate (1)

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. A. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53, 50–59 (2002).
[CrossRef] [PubMed]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat. (1)

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429–436 (2005).
[PubMed]

Other (3)

K. C. Smith, The Science of Photobiology, 2nd ed.(Plenum, 1989).

D. Theodorescu and T. L. Krupski, “Prostate cancer—biology, diagnosis, pathology, staging, and natural history,” http://emedicine.medscape.com/article/458011-overview (2009).

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDs, http://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagrams of the cell-bound mechanism and reorientation of Cybesin (Cytate) molecules in stained (a) cancerous tissue, which has a higher cell density and more cell-bound Cybesin (Cytate) molecules, and (b) normal tissue, which has a lower cell density and less cell-bound Cybesin (Cytate). Molecules with their absorption transition vectors (arrows) aligned parallel to the linearly polarized pump light (for example: vertical) and those having a parallel component of other-orientated transition vectors are excited. For free (unbound) molecules, the rapid rotations contribute to the fluorescence depolarization. In contrast, Cybesin (Cytate) molecules conjugated to prostate cells contribute to the static fluorescence anisotropy component.

Fig. 2
Fig. 2

The time-resolved fluorescence intensity of light emitted from Cybesin-stained (a) cancerous and (b) normal prostate tissues with linearly polarized 800 nm laser excitation. The dashed- and dotted-curve profiles display the parallel and perpendicular components emitted from stained tissue, respectively. The solid lines display the fitting curves calculated using Eq. (8) for the parallel component and Eq. (9) for the perpendicular component, respectively.

Fig. 3
Fig. 3

(a) The total emission intensity of Cybesin-stained cancerous (dashed curve) and normal (dotted curve) prostate tissues obtained using the data shown in Figs. 2a, 2b, and Eq. (5) in the text. The solid lines display the fitting curves calculated using Eq. (5). (b) Time-dependent fluorescence anisotropy calculated using Eq. (1) in the text and the measured data shown in Figs. 2a, 2b. The dashed and dashed–dotted curve profiles indicate the r ( t ) for the stained cancerous and normal prostate tissues, respectively. The fitting curves for Cybesin in the cancer tissue (thick solid curve) and Cybesin in the normal tissue (thin solid curve) were calculated using Eq. (10) in the text and the corresponding data shown by the dashed and dashed–dotted curves in (b).

Fig. 4
Fig. 4

Contrast agent fluorescence polarization images of a cancerous/normal prostate tissue sample consisting of a tiny Cytate-stained cancerous and a tiny Cytate-stained normal prostate tissue covered by large pieces of host normal prostate tissue. The images were recorded at λ pump = 750 nm and λ detection = 850 nm when the polarization direction in front of the CCD camera is (a) parallel and (b) perpendicular to that of the illuminating light. (c) Polarization difference image obtained by subtracting (b) from (a). (d)–(f) Digital spatial cross section intensity distributions of the images shown in (a)–(c) at a row crossing the areas of the stained cancerous (C) and normal (N) tissues, respectively.

Tables (1)

Tables Icon

Table 1 Comparison of Time-Resolved Emission Parameters of Cybesin and Cytate in Cancerous and Normal Prostate Tissues

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = I ( t ) I ( t ) I ( t ) + 2 I ( t ) ,
I | | ( t ) = I 0 3 exp ( t τ f ) ( 1 + 2 r 0 exp ( t τ r ) ) , I ( t ) = I 0 3 exp ( t τ f ) ( 1 r 0 exp ( - t τ r ) ) ,
r ( t ) = r 0 exp ( t τ r ) .
τ r = η V K T ,
I ( t ) = I ( t ) + 2 I ( t ) = I 0 exp ( t τ f ) ,
I ( t ) = n I ( n ) ( t ) = n I 0 ( n ) exp ( t τ f ( n ) ) ,
I ( t ) = n I ( n ) ( t ) = n I 0 ( n ) 3 exp ( t τ f ( n ) ) ( 1 + 2 r 0 ( n ) exp ( t τ r ( n ) ) ) ,
I ( t ) = I 0 3 exp ( t τ f ) ( 1 + 2 r 1 + 2 r 0 exp ( t τ r ) ) ,
I ( t ) = I 0 3 exp ( t τ f ) ( 1 r 1 r 0 exp ( t τ r ) ) .
r ( t ) = r 1 + r 0 exp ( t τ r ) .
C = I c I n I c + I n ,
I ( t ) = n I ( n ) ( t ) = n I 0 ( n ) 3 exp ( t τ f ( n ) ) ( 1 + 2 r 0 ( n ) exp ( t τ r ( n ) ) ) .
I ( t ) = 2 I ( 2 ) ( t ) = I 0 ( 1 ) 3 exp ( t τ f ( 1 ) ) ( 1 + 2 r 0 ( 1 ) exp ( t τ r ( 1 ) ) ) + I 0 ( 2 ) 3 exp ( t τ f ( 2 ) ) ( 1 + 2 r 0 ( 2 ) exp ( t τ r ( 2 ) ) ) = exp ( t τ f ) ( I 0 ( 1 ) 3 + I 0 ( 2 ) 3 + I 0 ( 1 ) 3 2 r 0 ( 1 ) + I 0 ( 2 ) 3 2 r 0 ( 2 ) exp ( t τ r ( 2 ) ) ) .
I ( t ) = exp ( t τ f ) ( C I 0 ( 2 ) 3 + I 0 ( 2 ) 3 + I 0 ( 2 ) 3 C 2 r 0 ( 1 ) + I 0 ( 2 ) 3 2 r 0 ( 2 ) exp ( t τ r ( 2 ) ) ) = I 0 ( 2 ) 3 exp ( t τ f ) ( ( C + 1 ) + 2 n r 0 ( 1 ) + 2 r 0 ( 2 ) exp ( t τ r ( 2 ) ) ) = I 0 ( 2 ) ( C n + 1 ) 3 exp ( t τ f ) ( 1 + 2 C C + 1 r 0 ( 1 ) + 2 1 C + 1 r 0 ( 2 ) exp ( t τ r ( 2 ) ) ) .
I ( t ) = I 0 3 exp ( t τ f ) ( 1 + 2 r 1 + 2 r 0 exp ( t τ r ) ) .

Metrics