Abstract

We numerically investigate the characteristics of the defect mode and the nonlinear effect of optical bistability in metal–insulator–metal (MIM) plasmonic Bragg grating waveguides with Kerr nonlinear defects. By means of finite-difference time-domain simulations, we find that the defect mode peak exhibits a blueshift and height-rise by enlarging the width of the defect layer, and it has a redshift and height-fall with the increase of the dielectric constant of defect layer. Obvious optical bistability is obtained in our waveguides with a length of less than 2μm. The results show that our structure could be applied to the design of all-optical switching in highly integrated optical circuits.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [CrossRef] [PubMed]
  3. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7554 (2009).
    [CrossRef]
  4. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
    [CrossRef] [PubMed]
  5. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  6. T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
    [CrossRef] [PubMed]
  7. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
    [CrossRef]
  8. K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005).
    [CrossRef]
  9. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
    [CrossRef] [PubMed]
  10. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
    [CrossRef] [PubMed]
  11. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B 90, 97–99 (2008).
    [CrossRef]
  12. C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008).
    [CrossRef] [PubMed]
  13. G. Tremblay and Y. L. Sheng, “Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique,” Appl. Opt. 49, A36–A41 (2010).
    [CrossRef] [PubMed]
  14. J. W. Mu and W. P. Huang, “A low-loss surface plasmonic bragg grating,” J. Lightwave Technol. 27, 436–439 (2009).
    [CrossRef]
  15. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [CrossRef]
  16. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005)
    [CrossRef]
  17. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008).
    [CrossRef] [PubMed]
  18. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006).
    [CrossRef]
  19. P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
    [CrossRef]
  20. C. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007).
    [CrossRef] [PubMed]
  21. Y. Shen and G. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16, 8421–8426 (2008).
    [CrossRef] [PubMed]
  22. M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
    [CrossRef]
  23. J. Park, H. Kim, I. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express 16, 16903–16915 (2008).
    [CrossRef] [PubMed]
  24. G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
    [CrossRef]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).
  26. M. Okuda and K. Onaka, “Bistability of optical resonator with distributed Bragg-Reflectors by using the Kerr effect,” Jpn. J. Appl. Phys. 16, 769–773 (1977).
    [CrossRef]

2010 (1)

2009 (4)

2008 (6)

2007 (2)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

C. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (6)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005)
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005).
[CrossRef]

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
[CrossRef]

2004 (2)

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[CrossRef]

1977 (1)

M. Okuda and K. Onaka, “Bistability of optical resonator with distributed Bragg-Reflectors by using the Kerr effect,” Jpn. J. Appl. Phys. 16, 769–773 (1977).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[CrossRef]

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

Chen, C. C.

Deng, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Donghyun, K.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Forsberg, E.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Freude, W.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
[CrossRef]

Fujii, M.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
[CrossRef]

Gong, Y.

Gray, S. K.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Han, Z.

Han, Z. H.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

He, M. D.

He, S.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[CrossRef]

Hosseini, A.

Hu, X.

Huang, W. P.

Huang, W. Q.

Huang, X. G.

Jiao, X.

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B 90, 97–99 (2008).
[CrossRef]

Jiao, X. J.

Jin, X. P.

Jung, J.

Kim, H.

Kim, S.

Koos, C.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
[CrossRef]

Lee, B.

Lee, I.

Lee, T. W.

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

Leuthold, J.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
[CrossRef]

Li, X.

Lin, X. S.

Liu, J. Q.

Liu, L.

Liu, X.

Lu, Y. H.

Massoud, Y.

Mei, T.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Min, C.

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B 90, 97–99 (2008).
[CrossRef]

C. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007).
[CrossRef] [PubMed]

Min, C. J.

Ming, H.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008).
[CrossRef] [PubMed]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B 90, 97–99 (2008).
[CrossRef]

C. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007).
[CrossRef] [PubMed]

Mu, J. W.

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

Ning, T. Y.

Okuda, M.

M. Okuda and K. Onaka, “Bistability of optical resonator with distributed Bragg-Reflectors by using the Kerr effect,” Jpn. J. Appl. Phys. 16, 769–773 (1977).
[CrossRef]

Onaka, K.

M. Okuda and K. Onaka, “Bistability of optical resonator with distributed Bragg-Reflectors by using the Kerr effect,” Jpn. J. Appl. Phys. 16, 769–773 (1977).
[CrossRef]

Park, J.

Poulton, C.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
[CrossRef]

Sage, I.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[CrossRef]

Sakagami, I.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
[CrossRef]

Shen, Y.

Sheng, Y. L.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Tao, J.

Tremblay, G.

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005)
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, D.

Wang, G.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005)
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, L.

Wang, L. L.

Wang, P.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B 90, 97–99 (2008).
[CrossRef]

C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008).
[CrossRef] [PubMed]

C. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007).
[CrossRef] [PubMed]

Wasey, J. A.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[CrossRef]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[CrossRef]

Wen, S. C.

Yang, G. Z.

Yuan, G. H.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Yuan, X. C.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Zhang, D. G.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Zhang, Q.

Zhou, Y. L.

Zou, B. S.

Adv. Mater. (1)

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B 90, 97–99 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005)
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Okuda and K. Onaka, “Bistability of optical resonator with distributed Bragg-Reflectors by using the Kerr effect,” Jpn. J. Appl. Phys. 16, 769–773 (1977).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (10)

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
[CrossRef] [PubMed]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006).
[CrossRef]

C. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007).
[CrossRef] [PubMed]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
[CrossRef] [PubMed]

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008).
[CrossRef] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7554 (2009).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef] [PubMed]

Y. Shen and G. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16, 8421–8426 (2008).
[CrossRef] [PubMed]

J. Park, H. Kim, I. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express 16, 16903–16915 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of our plasmonic waveguide.

Fig. 2
Fig. 2

(a) Real and (b) imaginary parts of the ERI versus the wavelength. The circular and dotted lines stand for Ag Si 3 N 4 and Ag–air, respectively. The two kinds of curves are connected with circles. In each circle, the curves from top to bottom correspond to the metal slit widths of 20, 40, and 100 nm , respectively. (c) Real  and (d) imaginary parts of the ERI versus the metal slit width at 1550 nm wavelength. The curves from top to bottom represent the linear dielectric of the Si 3 N 4 , InGaAsP, and air in the MIM waveguide, respectively.

Fig. 3
Fig. 3

(a) Transmission spectrum with a defect mode at 1550 nm . (b), (c) Field distributions of | H z | 2 with incident wavelengths of 1400 and 1550 nm .

Fig. 4
Fig. 4

Transmission spectra with different (a) defect width and (b) dielectric constant of the defect layer. The loss ratio at the defect mode with different (c) defect width and (d) dielectric constant of the defect layer.

Fig. 5
Fig. 5

Real and imaginary part of n eff versus ε d at 1550 nm wavelength with metal slit width of 40 nm .

Fig. 6
Fig. 6

Transmission coefficients by increasing and decreasing the incident intensity.

Fig. 7
Fig. 7

Field distributions of | H z | 2 at the wavelength of 1550 nm with incident intensities of (a)  1.25 × 10 5 V 2 / μm 2 and (b)  100 V 2 / m 2 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε m k d tanh ( t k d 2 ) + ε d k m = 0 ,
k d , m = β spp 2 ε d , m k 0 2 ,
n eff = β spp / k 0 ,
ε m ( w ) = ε w p 2 w ( w + i γ ) ,
ε c = ε 0 + χ ( 3 ) | E | 2 ,
λ c = 4 π Re ( n eff ) d c 2 k π ( φ ref 1 + φ ref 2 ) ,

Metrics