Abstract

A 20-point laser Doppler vibrometer with single photodetector is presented for noncontact dynamic measurement. A 5×4 beam array with various frequency shifts is generated by a 1.55μm distributed feedback laser and four acousto-optic devices, and illuminating different points on vibrating objects. The reflected beams are coupled into a single-mode fiber by a pigtailed collimator and interfere with a reference beam. The signal output from a high-speed photodetector is amplified and then digitized by a high-speed analog-to-digital converter with a sampling rate of 1 gigasample per second (1GS/s). Several methods are introduced to avoid the cross talk among different frequencies and extract the vibration information of 20 points from a one-dimensional signal. Two signal processing algorithms based on Fourier transform and windowed Fourier transform are illustrated to extract the vibration signals at different points. The experimental results are compared with that from a commercial single-point laser vibrometer. The results show simultaneous vibration measurement can be realized on multiple points using a single laser source and a single photodetector.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Time-averaged digital holography,” Opt. Lett. 28, 1900–1902 (2003).
    [CrossRef] [PubMed]
  2. P. Hariharan, B. F. Oreb, and C. H. Freund, “Stroboscopic holographic interferometry: measurements of vector components of a vibration,” Appl. Opt. 26, 3899–3903 (1987).
    [CrossRef] [PubMed]
  3. G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
    [CrossRef]
  4. J. M. Huntley, G. H. Kaufmann, and D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556–6563 (1999).
    [CrossRef]
  5. G. H. Kaufmann and G. E. Galizzi, “Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods,” Appl. Opt. 41, 7254–7263 (2002).
    [CrossRef] [PubMed]
  6. Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of a digital hologram sequence,” Appl. Opt. 46, 5719–5727 (2007).
    [CrossRef] [PubMed]
  7. Y. Fu, R. M. Groves, G. Pedrini, and W. Osten, “Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence,” Appl. Opt. 46, 8645–8655(2007).
    [CrossRef] [PubMed]
  8. P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20, 1265–1285 (2006).
    [CrossRef]
  9. J. La, J. Choi, S. Wang, K. Kim, and K. Park, “Continuous scanning laser Doppler vibrometer for mode shape analysis,” Opt. Eng. 42, 730–737 (2003).
    [CrossRef]
  10. J. J. J. Dirckx, H. J. van Elburg, W. F. Decraemer, J. A. N. Buytaert, and J. A. Melkebeek, “Performance and testing of a four channel high-resolution heterodyne interferometer,” Opt. Lasers Eng. 47, 488–494 (2009).
    [CrossRef]
  11. A. Waz, P. R. Kaczmarek, M. P. Nikodem, and K. M. Abramski, “WDM optocommunication technology used for multipoint fibre vibrometry,” Proc. SPIE 7098, 70980E (2008).
    [CrossRef]
  12. W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multi-channel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).
    [CrossRef]
  13. R. Burgett, V. Aranchuk, J. Sabatier, and S. S. Bishop, “Demultiplexing multiple beam laser Doppler vibrometry for continuous scanning,” Proc. SPIE 7303, 730301 (2009).
    [CrossRef]
  14. J. M. Kilpatrick and V. Markov, “Matrix laser vibrometer for transient modal imaging and rapid non-destructive testing,” Proc. SPIE 7098, 709809 (2008).
    [CrossRef]
  15. R. Di Sante, “A novel fiber optic sensor for multiple and simultaneous measurement of vibration velocity,” Rev. Sci. Instrum. 75, 1953–1958 (2004).
    [CrossRef]
  16. K. Maru, K. Kobayashi, and Y. Fujii, “Multi-point differential laser Doppler velocimeter using arrayed waveguide gratings with small wavelength sensitivity,” Opt. Express 18, 301–308(2010).
    [CrossRef] [PubMed]
  17. T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).
    [CrossRef] [PubMed]
  18. E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245, 309–313(2005).
    [CrossRef]
  19. D. Garcia-Vizcaino, F. Dios, J. Recolons, A. Rodriguez, and A. Comeron, “One-wavelength two-component laser Doppler velocimeter system for surface displacement monitoring,” Opt. Eng. 47, 123606 (2008).
    [CrossRef]
  20. Y. Fu, M. Guo, and P. B. Phua, “Spatially encoded multibeam laser Doppler vibrometry using a single photodetector,” Opt. Lett. 35, 1356–1358 (2010).
    [CrossRef] [PubMed]
  21. G. Cloud, “Optical methods in experimental mechanics: Part 17: laser Doppler interferometry,” Exp. Tech. 29, 27–30 (2005).
    [CrossRef]
  22. S. Mallat, A Wavelet Tour of Signal Processing (Academic, 1998).
  23. K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
    [CrossRef]
  24. M. G. Moharam and L. Young, “Criterion for Bragg and Raman–Nath diffraction regimes,” Appl. Opt. 17, 1757–1759(1978).
    [CrossRef] [PubMed]
  25. C. A. Hill, M. Harris, and K. D. Ridley, “Fiber-based 1.5 μm lidar vibrometer in pulsed and continuous modes,” Appl. Opt. 46, 4376–4385 (2007).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

J. J. J. Dirckx, H. J. van Elburg, W. F. Decraemer, J. A. N. Buytaert, and J. A. Melkebeek, “Performance and testing of a four channel high-resolution heterodyne interferometer,” Opt. Lasers Eng. 47, 488–494 (2009).
[CrossRef]

R. Burgett, V. Aranchuk, J. Sabatier, and S. S. Bishop, “Demultiplexing multiple beam laser Doppler vibrometry for continuous scanning,” Proc. SPIE 7303, 730301 (2009).
[CrossRef]

2008 (3)

J. M. Kilpatrick and V. Markov, “Matrix laser vibrometer for transient modal imaging and rapid non-destructive testing,” Proc. SPIE 7098, 709809 (2008).
[CrossRef]

A. Waz, P. R. Kaczmarek, M. P. Nikodem, and K. M. Abramski, “WDM optocommunication technology used for multipoint fibre vibrometry,” Proc. SPIE 7098, 70980E (2008).
[CrossRef]

D. Garcia-Vizcaino, F. Dios, J. Recolons, A. Rodriguez, and A. Comeron, “One-wavelength two-component laser Doppler velocimeter system for surface displacement monitoring,” Opt. Eng. 47, 123606 (2008).
[CrossRef]

2007 (4)

2006 (1)

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20, 1265–1285 (2006).
[CrossRef]

2005 (3)

G. Cloud, “Optical methods in experimental mechanics: Part 17: laser Doppler interferometry,” Exp. Tech. 29, 27–30 (2005).
[CrossRef]

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245, 309–313(2005).
[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).
[CrossRef] [PubMed]

2004 (1)

R. Di Sante, “A novel fiber optic sensor for multiple and simultaneous measurement of vibration velocity,” Rev. Sci. Instrum. 75, 1953–1958 (2004).
[CrossRef]

2003 (2)

J. La, J. Choi, S. Wang, K. Kim, and K. Park, “Continuous scanning laser Doppler vibrometer for mode shape analysis,” Opt. Eng. 42, 730–737 (2003).
[CrossRef]

P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Time-averaged digital holography,” Opt. Lett. 28, 1900–1902 (2003).
[CrossRef] [PubMed]

2002 (1)

1999 (1)

1998 (1)

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multi-channel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).
[CrossRef]

1997 (1)

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

1987 (1)

1978 (1)

Abramski, K. M.

A. Waz, P. R. Kaczmarek, M. P. Nikodem, and K. M. Abramski, “WDM optocommunication technology used for multipoint fibre vibrometry,” Proc. SPIE 7098, 70980E (2008).
[CrossRef]

Aranchuk, V.

R. Burgett, V. Aranchuk, J. Sabatier, and S. S. Bishop, “Demultiplexing multiple beam laser Doppler vibrometry for continuous scanning,” Proc. SPIE 7303, 730301 (2009).
[CrossRef]

Bishop, S. S.

R. Burgett, V. Aranchuk, J. Sabatier, and S. S. Bishop, “Demultiplexing multiple beam laser Doppler vibrometry for continuous scanning,” Proc. SPIE 7303, 730301 (2009).
[CrossRef]

Burgett, R.

R. Burgett, V. Aranchuk, J. Sabatier, and S. S. Bishop, “Demultiplexing multiple beam laser Doppler vibrometry for continuous scanning,” Proc. SPIE 7303, 730301 (2009).
[CrossRef]

Büttner, L.

Buytaert, J. A. N.

J. J. J. Dirckx, H. J. van Elburg, W. F. Decraemer, J. A. N. Buytaert, and J. A. Melkebeek, “Performance and testing of a four channel high-resolution heterodyne interferometer,” Opt. Lasers Eng. 47, 488–494 (2009).
[CrossRef]

Castellini, P.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20, 1265–1285 (2006).
[CrossRef]

Changkakoti, R.

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multi-channel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).
[CrossRef]

Chicharo, J. F.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245, 309–313(2005).
[CrossRef]

Choi, J.

J. La, J. Choi, S. Wang, K. Kim, and K. Park, “Continuous scanning laser Doppler vibrometer for mode shape analysis,” Opt. Eng. 42, 730–737 (2003).
[CrossRef]

Cloud, G.

G. Cloud, “Optical methods in experimental mechanics: Part 17: laser Doppler interferometry,” Exp. Tech. 29, 27–30 (2005).
[CrossRef]

Comeron, A.

D. Garcia-Vizcaino, F. Dios, J. Recolons, A. Rodriguez, and A. Comeron, “One-wavelength two-component laser Doppler velocimeter system for surface displacement monitoring,” Opt. Eng. 47, 123606 (2008).
[CrossRef]

Czarske, J.

Decraemer, W. F.

J. J. J. Dirckx, H. J. van Elburg, W. F. Decraemer, J. A. N. Buytaert, and J. A. Melkebeek, “Performance and testing of a four channel high-resolution heterodyne interferometer,” Opt. Lasers Eng. 47, 488–494 (2009).
[CrossRef]

Di Sante, R.

R. Di Sante, “A novel fiber optic sensor for multiple and simultaneous measurement of vibration velocity,” Rev. Sci. Instrum. 75, 1953–1958 (2004).
[CrossRef]

Dios, F.

D. Garcia-Vizcaino, F. Dios, J. Recolons, A. Rodriguez, and A. Comeron, “One-wavelength two-component laser Doppler velocimeter system for surface displacement monitoring,” Opt. Eng. 47, 123606 (2008).
[CrossRef]

Dirckx, J. J. J.

J. J. J. Dirckx, H. J. van Elburg, W. F. Decraemer, J. A. N. Buytaert, and J. A. Melkebeek, “Performance and testing of a four channel high-resolution heterodyne interferometer,” Opt. Lasers Eng. 47, 488–494 (2009).
[CrossRef]

Freund, C. H.

Fu, Y.

Fujii, Y.

Galizzi, G. E.

Garcia-Vizcaino, D.

D. Garcia-Vizcaino, F. Dios, J. Recolons, A. Rodriguez, and A. Comeron, “One-wavelength two-component laser Doppler velocimeter system for surface displacement monitoring,” Opt. Eng. 47, 123606 (2008).
[CrossRef]

Gougeon, S.

Groves, R. M.

Guo, M.

Hariharan, P.

Harris, M.

Hill, C. A.

Huntley, J. M.

Kaczmarek, P. R.

A. Waz, P. R. Kaczmarek, M. P. Nikodem, and K. M. Abramski, “WDM optocommunication technology used for multipoint fibre vibrometry,” Proc. SPIE 7098, 70980E (2008).
[CrossRef]

Kaufmann, G. H.

Kerr, D.

Kilpatrick, J. M.

J. M. Kilpatrick and V. Markov, “Matrix laser vibrometer for transient modal imaging and rapid non-destructive testing,” Proc. SPIE 7098, 709809 (2008).
[CrossRef]

Kim, K.

J. La, J. Choi, S. Wang, K. Kim, and K. Park, “Continuous scanning laser Doppler vibrometer for mode shape analysis,” Opt. Eng. 42, 730–737 (2003).
[CrossRef]

Kobayashi, K.

Kruzelecky, R. V.

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multi-channel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).
[CrossRef]

La, J.

J. La, J. Choi, S. Wang, K. Kim, and K. Park, “Continuous scanning laser Doppler vibrometer for mode shape analysis,” Opt. Eng. 42, 730–737 (2003).
[CrossRef]

Leval, J.

Li, E. B.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245, 309–313(2005).
[CrossRef]

Mallat, S.

S. Mallat, A Wavelet Tour of Signal Processing (Academic, 1998).

Markov, V.

J. M. Kilpatrick and V. Markov, “Matrix laser vibrometer for transient modal imaging and rapid non-destructive testing,” Proc. SPIE 7098, 709809 (2008).
[CrossRef]

Martarelli, M.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20, 1265–1285 (2006).
[CrossRef]

Maru, K.

Melkebeek, J. A.

J. J. J. Dirckx, H. J. van Elburg, W. F. Decraemer, J. A. N. Buytaert, and J. A. Melkebeek, “Performance and testing of a four channel high-resolution heterodyne interferometer,” Opt. Lasers Eng. 47, 488–494 (2009).
[CrossRef]

Moharam, M. G.

Mounier, D.

Nikodem, M. P.

A. Waz, P. R. Kaczmarek, M. P. Nikodem, and K. M. Abramski, “WDM optocommunication technology used for multipoint fibre vibrometry,” Proc. SPIE 7098, 70980E (2008).
[CrossRef]

Oreb, B. F.

Osten, W.

Park, K.

J. La, J. Choi, S. Wang, K. Kim, and K. Park, “Continuous scanning laser Doppler vibrometer for mode shape analysis,” Opt. Eng. 42, 730–737 (2003).
[CrossRef]

Pedrini, G.

Pfister, T.

Phua, P. B.

Picart, P.

Qian, K.

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
[CrossRef]

Recolons, J.

D. Garcia-Vizcaino, F. Dios, J. Recolons, A. Rodriguez, and A. Comeron, “One-wavelength two-component laser Doppler velocimeter system for surface displacement monitoring,” Opt. Eng. 47, 123606 (2008).
[CrossRef]

Ridley, K. D.

Rodriguez, A.

D. Garcia-Vizcaino, F. Dios, J. Recolons, A. Rodriguez, and A. Comeron, “One-wavelength two-component laser Doppler velocimeter system for surface displacement monitoring,” Opt. Eng. 47, 123606 (2008).
[CrossRef]

Sabatier, J.

R. Burgett, V. Aranchuk, J. Sabatier, and S. S. Bishop, “Demultiplexing multiple beam laser Doppler vibrometry for continuous scanning,” Proc. SPIE 7303, 730301 (2009).
[CrossRef]

Shirai, K.

Tiziani, H.

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Tomasini, E. P.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20, 1265–1285 (2006).
[CrossRef]

van Elburg, H. J.

J. J. J. Dirckx, H. J. van Elburg, W. F. Decraemer, J. A. N. Buytaert, and J. A. Melkebeek, “Performance and testing of a four channel high-resolution heterodyne interferometer,” Opt. Lasers Eng. 47, 488–494 (2009).
[CrossRef]

Wang, S.

J. La, J. Choi, S. Wang, K. Kim, and K. Park, “Continuous scanning laser Doppler vibrometer for mode shape analysis,” Opt. Eng. 42, 730–737 (2003).
[CrossRef]

Waz, A.

A. Waz, P. R. Kaczmarek, M. P. Nikodem, and K. M. Abramski, “WDM optocommunication technology used for multipoint fibre vibrometry,” Proc. SPIE 7098, 70980E (2008).
[CrossRef]

Xi, J.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245, 309–313(2005).
[CrossRef]

Yao, J. Q.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245, 309–313(2005).
[CrossRef]

Young, L.

Yu, D. Y.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245, 309–313(2005).
[CrossRef]

Zheng, W.

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multi-channel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).
[CrossRef]

Zou, Y.

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Appl. Opt. (8)

M. G. Moharam and L. Young, “Criterion for Bragg and Raman–Nath diffraction regimes,” Appl. Opt. 17, 1757–1759(1978).
[CrossRef] [PubMed]

P. Hariharan, B. F. Oreb, and C. H. Freund, “Stroboscopic holographic interferometry: measurements of vector components of a vibration,” Appl. Opt. 26, 3899–3903 (1987).
[CrossRef] [PubMed]

J. M. Huntley, G. H. Kaufmann, and D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556–6563 (1999).
[CrossRef]

G. H. Kaufmann and G. E. Galizzi, “Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods,” Appl. Opt. 41, 7254–7263 (2002).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).
[CrossRef] [PubMed]

C. A. Hill, M. Harris, and K. D. Ridley, “Fiber-based 1.5 μm lidar vibrometer in pulsed and continuous modes,” Appl. Opt. 46, 4376–4385 (2007).
[CrossRef] [PubMed]

Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of a digital hologram sequence,” Appl. Opt. 46, 5719–5727 (2007).
[CrossRef] [PubMed]

Y. Fu, R. M. Groves, G. Pedrini, and W. Osten, “Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence,” Appl. Opt. 46, 8645–8655(2007).
[CrossRef] [PubMed]

Exp. Tech. (1)

G. Cloud, “Optical methods in experimental mechanics: Part 17: laser Doppler interferometry,” Exp. Tech. 29, 27–30 (2005).
[CrossRef]

Mech. Syst. Signal Process. (1)

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20, 1265–1285 (2006).
[CrossRef]

Opt. Commun. (1)

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245, 309–313(2005).
[CrossRef]

Opt. Eng. (2)

D. Garcia-Vizcaino, F. Dios, J. Recolons, A. Rodriguez, and A. Comeron, “One-wavelength two-component laser Doppler velocimeter system for surface displacement monitoring,” Opt. Eng. 47, 123606 (2008).
[CrossRef]

J. La, J. Choi, S. Wang, K. Kim, and K. Park, “Continuous scanning laser Doppler vibrometer for mode shape analysis,” Opt. Eng. 42, 730–737 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (3)

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
[CrossRef]

J. J. J. Dirckx, H. J. van Elburg, W. F. Decraemer, J. A. N. Buytaert, and J. A. Melkebeek, “Performance and testing of a four channel high-resolution heterodyne interferometer,” Opt. Lasers Eng. 47, 488–494 (2009).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (4)

A. Waz, P. R. Kaczmarek, M. P. Nikodem, and K. M. Abramski, “WDM optocommunication technology used for multipoint fibre vibrometry,” Proc. SPIE 7098, 70980E (2008).
[CrossRef]

W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multi-channel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).
[CrossRef]

R. Burgett, V. Aranchuk, J. Sabatier, and S. S. Bishop, “Demultiplexing multiple beam laser Doppler vibrometry for continuous scanning,” Proc. SPIE 7303, 730301 (2009).
[CrossRef]

J. M. Kilpatrick and V. Markov, “Matrix laser vibrometer for transient modal imaging and rapid non-destructive testing,” Proc. SPIE 7098, 709809 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Di Sante, “A novel fiber optic sensor for multiple and simultaneous measurement of vibration velocity,” Rev. Sci. Instrum. 75, 1953–1958 (2004).
[CrossRef]

Other (1)

S. Mallat, A Wavelet Tour of Signal Processing (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Beam array with different frequency shifts: (a) frequency shifter in the Bragg regime; (b) Raman-Nath frequency shifter, (c) at position I in Fig. 2a, (d) at position II in Fig. 2a, (e) at position III in Fig. 2a, and (f) real intensity distribution of 20 beams on a sensing card (all frequency shift values are with the unit of megahertz).

Fig. 2
Fig. 2

(a) Top view of the experimental setup of the 20-beam laser Doppler vibrometer with a single detector. 1, 80 mW DFB laser system; 2, single-mode fiber coupler ( 1 99 ); 3, single-mode fiber coupler ( 20 80 ); 4, polarization controllers; 5, fiber-based AOM ( 250 MHz up-shift); 6, fiber-based AOM ( 50 MHz , up-shift); 7, GRIN lenses; 8, Bragg frequency shifter; 9, mirrors; 10, focusing lens; 11, Raman–Nath frequency shifter; 12, lens 1 to form a telescope system; 13, polarizing beam splitter; 14, lens 2 to form a telescope system; 15, quarter-wave plate; 16, imaging lens; 17, specimen; 18, shaker; 19, shaker controller; 20, function generator; 21, single-mode pigtailed collimator; 22, single-mode fiber coupler ( 30 70 ); 23, high-speed photodetector; 24, NI preamplifier and high-speed digitizer with processor. (b) Specimens: two cantilever beams with different thicknesses.

Fig. 3
Fig. 3

(a) Spectrogram of detected signal in the frequency range from 9 to 31 MHz . (b) spectrum of the signal from the proposed 20-point LDV.

Fig. 4
Fig. 4

Velocity of point A obtained (a) by the WFR method and (b) by Fourier analysis. The displacement of point A obtained (c) by the WFR method, (d) by Fourier analysis, and (e) by the Polytec PDV-100 single-point vibrometer.

Fig. 5
Fig. 5

Spectrogram of a signal at (a) 110, (b) 130, (c) 150, (d) 170, and (e)  190 MHz .

Fig. 6
Fig. 6

3-D plot of the instantaneous displacement of two cantilever beams at instants t 1 and t 2 as shown in Fig. 4c.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f D ( t ) = V ( t ) · S λ ,
I = I DC + I RO cos ( 2 π ( f D + f AOM ) t + Δ ϕ ) ,
I = I DC + i = 1 20 I M ( i ) cos ( 2 π ( f D ( i ) + f AOM ( i ) ) t + Δ ϕ ( i ) ) + m = 1 19 n > m 20 I m n cos ( 2 π [ ( f D ( m ) f D ( n ) ) + ( f AOM ( m ) f AOM ( n ) ) ] t + Δ ϕ m n ) ,

Metrics