Abstract

We present an open-loop adaptive optics (AO) system based on two liquid-crystal spatial light modulators (LCSLMs) that profit from high precision wavefront generation and good repeatability. A wide optical bandwidth of 300nm is designed for the system, and a new open-loop optical layout is invented to conveniently switch between the open and closed loop. The corresponding control algorithm is introduced with a loop frequency (the reciprocal of the total time delay of a correction loop) of 103Hz. The system was mounted onto a 2.16m telescope for vertical atmospheric turbulence correction. The full width at half-maximum of the image of the star α Boo reached 0.636arcsec after the open-loop correction, while it was 2.12arcsec before the correction. The result indicates that the open-loop AO system based on LCSLMs potentially has the ability to be used for general astronomical applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
    [CrossRef]
  2. H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
    [CrossRef]
  3. W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
    [CrossRef]
  4. A. Iriarte, S. Cuevas, J. E. Graves, and M. Northcott, “Adaptive secondary for the 2.1m Telescope at SPM Observatory,” Proc. SPIE 4007, 537–546 (2000).
    [CrossRef]
  5. A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002).
    [CrossRef]
  6. M. A. van Dam, D. Le Mignant, and B. A. Macintosh, “Performance of the Keck Observatory adaptive-optics system,” Appl. Opt. 43, 5458–5467 (2004).
    [CrossRef] [PubMed]
  7. M. Vorontsov, J. Riker, G. Carhart, V. S. Gudimetla, L. Beresnev, T. Weyrauch, and L. C. Roberts, Jr., “Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63m telescope,” Appl. Opt. 48, A47–57 (2009).
    [CrossRef]
  8. K. Morzinski, K. Harpse, D. Gavel, and S. Ammons, “The open-loop control of MEMS: modeling and experimental results,” Proc. SPIE 6467, 64670G (2007).
    [CrossRef]
  9. D. T. Gavel, “Adaptive optics control strategies for extremely large telescopes,” Proc. SPIE 4494, 215–220 (2002).
    [CrossRef]
  10. C. Vogel and Q. Yang, “Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror,” J. Opt. Soc. Am. A 23, 1074–1081 (2006).
    [CrossRef]
  11. J. Stewart, A. Diouf, Y. Zhou, and T. Bifano, “Open-loop control of a MEMS deformable mirror for large-amplitude wavefront control,” J. Opt. Soc. Am. A 24, 3827–3833 (2007).
    [CrossRef]
  12. G. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
    [CrossRef] [PubMed]
  13. M. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083–1085 (2000).
    [CrossRef]
  14. D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 2345–2355 (2001).
    [CrossRef]
  15. S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
    [CrossRef]
  16. N. Collings, W. Crossland, P. Ayliffe, D. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747(1989).
    [CrossRef] [PubMed]
  17. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, and N. Heimann, “Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites,” Opt. Express 10, 1508–1519 (2002).
    [PubMed]
  18. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12, 6403–6409 (2004).
    [CrossRef] [PubMed]
  19. C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009).
    [CrossRef] [PubMed]
  20. P. Prieto, E. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
    [CrossRef] [PubMed]
  21. J. Schmidt, M. Goda, and B. Duncan, “Aberration production using a high-resolution liquid-crystal spatial light modulator,” Appl. Opt. 46, 2423–2433 (2007).
    [CrossRef] [PubMed]
  22. G. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
    [CrossRef] [PubMed]
  23. T. L. Kelly and G. D. Love, “White-light performance of a polarization-independent liquid-crystal phase modulator,” Appl. Opt. 38, 1986–1989 (1999).
    [CrossRef]
  24. L. Hu, X. Li, Q. Mu, Z. Cao, D. Li, Y. Liu, Z. Peng, and X. Lu, “A polarization independent liquid crystal adaptive optics system,” J. Opt. 12, 045501 (2010).
    [CrossRef]
  25. D. Cai, J. Yao, and W. Jiang, “Liquid crystal adaptive optics system for unpolarized light,” Proc. SPIE 7209, 72090P(2009).
    [CrossRef]
  26. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Open-loop correction of horizontal turbulence: system design and result,” Appl. Opt. 47, 4297–4301 (2008).
    [CrossRef] [PubMed]
  27. R. Dou and M. Giles, “Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder,” Opt. Lett. 20, 1583–1585 (1995).
    [CrossRef] [PubMed]
  28. J. Gourlay, G. Love, P. Birch, R. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
    [CrossRef]
  29. S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6, 2–6 (2000).
    [CrossRef] [PubMed]
  30. M. K. Giles, A. J. Seward, and T. M. Giles, “Closed-loop phase-contrast adaptive optics system using liquid crystal phase modulators: experimental results,” Proc. SPIE 4493, 174–183(2002).
    [CrossRef]
  31. Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, “Correction of horizontal turbulence with nematic liquid crystal wavefront corrector,” Opt. Express 16, 7006–7013 (2008).
    [CrossRef] [PubMed]
  32. Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537(2009).
    [CrossRef] [PubMed]
  33. M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005).
    [CrossRef]
  34. M. Gruneisen, R. Dymale, and M. Garvin, “Wavelength-dependent characteristics of modulo Nλ0 optical wavefront control,” Appl. Opt. 45, 4075–4083 (2006).
    [CrossRef] [PubMed]
  35. C. Boyer, V. Michau, and G. Rousset, “Adaptive optics: interaction matrix measurements and real time control algorithms for the Come-On project,” Proc. SPIE 1542, 46–61(1991).
    [CrossRef]
  36. D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
    [CrossRef] [PubMed]
  37. L. Thibos, R. Applegate, J. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).
  38. Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “Improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283, 946–950(2010).
    [CrossRef]
  39. M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
  40. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]

2010 (2)

L. Hu, X. Li, Q. Mu, Z. Cao, D. Li, Y. Liu, Z. Peng, and X. Lu, “A polarization independent liquid crystal adaptive optics system,” J. Opt. 12, 045501 (2010).
[CrossRef]

Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “Improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283, 946–950(2010).
[CrossRef]

2009 (4)

2008 (2)

2007 (3)

2006 (2)

2005 (2)

D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
[CrossRef] [PubMed]

M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005).
[CrossRef]

2004 (3)

2003 (1)

S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
[CrossRef]

2002 (5)

D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, and N. Heimann, “Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites,” Opt. Express 10, 1508–1519 (2002).
[PubMed]

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002).
[CrossRef]

D. T. Gavel, “Adaptive optics control strategies for extremely large telescopes,” Proc. SPIE 4494, 215–220 (2002).
[CrossRef]

M. K. Giles, A. J. Seward, and T. M. Giles, “Closed-loop phase-contrast adaptive optics system using liquid crystal phase modulators: experimental results,” Proc. SPIE 4493, 174–183(2002).
[CrossRef]

L. Thibos, R. Applegate, J. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

2001 (1)

2000 (3)

1999 (2)

T. L. Kelly and G. D. Love, “White-light performance of a polarization-independent liquid-crystal phase modulator,” Appl. Opt. 38, 1986–1989 (1999).
[CrossRef]

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

1998 (1)

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

1997 (2)

G. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
[CrossRef] [PubMed]

J. Gourlay, G. Love, P. Birch, R. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

1995 (1)

1993 (1)

1991 (1)

C. Boyer, V. Michau, and G. Rousset, “Adaptive optics: interaction matrix measurements and real time control algorithms for the Come-On project,” Proc. SPIE 1542, 46–61(1991).
[CrossRef]

1990 (2)

M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

1989 (1)

1976 (1)

Ammons, S.

K. Morzinski, K. Harpse, D. Gavel, and S. Ammons, “The open-loop control of MEMS: modeling and experimental results,” Proc. SPIE 6467, 64670G (2007).
[CrossRef]

Andrews, J. R.

S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
[CrossRef]

Applegate, R.

L. Thibos, R. Applegate, J. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Artal, P.

Ayliffe, P.

Baker, J.

Baker, J. T.

S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
[CrossRef]

Beresnev, L.

Bifano, T.

Birch, P.

J. Gourlay, G. Love, P. Birch, R. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Booth, M. J.

Boyer, C.

C. Boyer, V. Michau, and G. Rousset, “Adaptive optics: interaction matrix measurements and real time control algorithms for the Come-On project,” Proc. SPIE 1542, 46–61(1991).
[CrossRef]

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Browne, S.

Cai, D.

D. Cai, J. Yao, and W. Jiang, “Liquid crystal adaptive optics system for unpolarized light,” Proc. SPIE 7209, 72090P(2009).
[CrossRef]

Cao, Z.

Carhart, G.

Chen, D. H.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Collings, N.

Crossland, W.

Cuevas, S.

A. Iriarte, S. Cuevas, J. E. Graves, and M. Northcott, “Adaptive secondary for the 2.1m Telescope at SPM Observatory,” Proc. SPIE 4007, 537–546 (2000).
[CrossRef]

Dayton, D.

DeSandre, L.

M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005).
[CrossRef]

Diouf, A.

Dou, R.

Duncan, B.

Dymale, R.

M. Gruneisen, R. Dymale, and M. Garvin, “Wavelength-dependent characteristics of modulo Nλ0 optical wavefront control,” Appl. Opt. 45, 4075–4083 (2006).
[CrossRef] [PubMed]

M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005).
[CrossRef]

Fernandez, E.

Fontanella, J. C.

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Gaffard, J. P.

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Gallegos, J.

Garvin, M.

Gavel, D.

K. Morzinski, K. Harpse, D. Gavel, and S. Ammons, “The open-loop control of MEMS: modeling and experimental results,” Proc. SPIE 6467, 64670G (2007).
[CrossRef]

Gavel, D. T.

D. T. Gavel, “Adaptive optics control strategies for extremely large telescopes,” Proc. SPIE 4494, 215–220 (2002).
[CrossRef]

Gigan, P.

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Gilbreath, G. C.

S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
[CrossRef]

Giles, M.

Giles, M. K.

M. K. Giles, A. J. Seward, and T. M. Giles, “Closed-loop phase-contrast adaptive optics system using liquid crystal phase modulators: experimental results,” Proc. SPIE 4493, 174–183(2002).
[CrossRef]

Giles, T. M.

M. K. Giles, A. J. Seward, and T. M. Giles, “Closed-loop phase-contrast adaptive optics system using liquid crystal phase modulators: experimental results,” Proc. SPIE 4493, 174–183(2002).
[CrossRef]

Goda, M.

Gonglewski, J.

Gourlay, J.

J. Gourlay, G. Love, P. Birch, R. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Graves, J. E.

A. Iriarte, S. Cuevas, J. E. Graves, and M. Northcott, “Adaptive secondary for the 2.1m Telescope at SPM Observatory,” Proc. SPIE 4007, 537–546 (2000).
[CrossRef]

Gruneisen, M.

M. Gruneisen, R. Dymale, and M. Garvin, “Wavelength-dependent characteristics of modulo Nλ0 optical wavefront control,” Appl. Opt. 45, 4075–4083 (2006).
[CrossRef] [PubMed]

M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005).
[CrossRef]

Guan, C. L.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Gudimetla, V. S.

Harpse, K.

K. Morzinski, K. Harpse, D. Gavel, and S. Ammons, “The open-loop control of MEMS: modeling and experimental results,” Proc. SPIE 6467, 64670G (2007).
[CrossRef]

Hartman, M.

Heimann, N.

Hong, X.

Hu, L.

Iriarte, A.

A. Iriarte, S. Cuevas, J. E. Graves, and M. Northcott, “Adaptive secondary for the 2.1m Telescope at SPM Observatory,” Proc. SPIE 4007, 537–546 (2000).
[CrossRef]

Iroshnikov, N. G.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002).
[CrossRef]

Ivanov, P. V.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002).
[CrossRef]

Iye, M.

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

Jagourel, P.

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Jiang, B.

Jiang, L. T.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Jiang, W.

D. Cai, J. Yao, and W. Jiang, “Liquid crystal adaptive optics system for unpolarized light,” Proc. SPIE 7209, 72090P(2009).
[CrossRef]

Jiang, W. H.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Jin, L.

Kamata, Y.

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

Kanzawa, T.

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

Kelly, T. L.

Kern, P.

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Kervin, P.

Larichev, A. V.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002).
[CrossRef]

Le Mignant, D.

Lena, P.

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Li, C.

Li, D.

Li, M.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Li, M. Q.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Li, X.

L. Hu, X. Li, Q. Mu, Z. Cao, D. Li, Y. Liu, Z. Peng, and X. Lu, “A polarization independent liquid crystal adaptive optics system,” J. Opt. 12, 045501 (2010).
[CrossRef]

Li, Y. Y.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Ling, N.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Liu, Y.

Love, G.

Love, G. D.

Lu, X.

L. Hu, X. Li, Q. Mu, Z. Cao, D. Li, Y. Liu, Z. Peng, and X. Lu, “A polarization independent liquid crystal adaptive optics system,” J. Opt. 12, 045501 (2010).
[CrossRef]

Lubin, D.

M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005).
[CrossRef]

Macintosh, B. A.

Manzanera, S.

Martin, J.

McDermott, S.

Merkle, F.

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Michau, V.

C. Boyer, V. Michau, and G. Rousset, “Adaptive optics: interaction matrix measurements and real time control algorithms for the Come-On project,” Proc. SPIE 1542, 46–61(1991).
[CrossRef]

Miller, D.

Morzinski, K.

K. Morzinski, K. Harpse, D. Gavel, and S. Ammons, “The open-loop control of MEMS: modeling and experimental results,” Proc. SPIE 6467, 64670G (2007).
[CrossRef]

Mu, Q.

Nakashima, K.

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

Neil, M. A.

Noll, R. J.

Northcott, M.

A. Iriarte, S. Cuevas, J. E. Graves, and M. Northcott, “Adaptive secondary for the 2.1m Telescope at SPM Observatory,” Proc. SPIE 4007, 537–546 (2000).
[CrossRef]

Otsubo, M.

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

Otten, L. J.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002).
[CrossRef]

Payne, D. M.

S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
[CrossRef]

Peng, Z.

L. Hu, X. Li, Q. Mu, Z. Cao, D. Li, Y. Liu, Z. Peng, and X. Lu, “A polarization independent liquid crystal adaptive optics system,” J. Opt. 12, 045501 (2010).
[CrossRef]

Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537(2009).
[CrossRef] [PubMed]

Phillips, J.

Prieto, P.

Purvis, A.

J. Gourlay, G. Love, P. Birch, R. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Rao, C. H.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Restaino, S.

Restaino, S. R.

S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
[CrossRef]

Rigaut, F.

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Riker, J.

Roberts, L. C.

Roddier, F.

M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

Rogers, S.

Rotgé, J.

M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005).
[CrossRef]

Rousset, G.

C. Boyer, V. Michau, and G. Rousset, “Adaptive optics: interaction matrix measurements and real time control algorithms for the Come-On project,” Proc. SPIE 1542, 46–61(1991).
[CrossRef]

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

Sarazin, M.

M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

Schmidt, J.

Schwiegerling, J.

L. Thibos, R. Applegate, J. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Seward, A. J.

M. K. Giles, A. J. Seward, and T. M. Giles, “Closed-loop phase-contrast adaptive optics system using liquid crystal phase modulators: experimental results,” Proc. SPIE 4493, 174–183(2002).
[CrossRef]

Sharples, R.

J. Gourlay, G. Love, P. Birch, R. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Shen, F.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Shilko, M.

Shmalhauzen, V. I.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002).
[CrossRef]

Snodgress, J.

Stewart, J.

Takami, H.

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

Takato, N.

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

Tang, G. M.

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

Teare, S. W.

S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
[CrossRef]

Thibos, L.

D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
[CrossRef] [PubMed]

L. Thibos, R. Applegate, J. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Underwood, I.

van Dam, M. A.

Vass, D.

Vogel, C.

Vorontsov, M.

Webb, R.

L. Thibos, R. Applegate, J. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Weyrauch, T.

Wilson, T.

Xia, M.

Xuan, L.

Yang, Q.

Yao, J.

D. Cai, J. Yao, and W. Jiang, “Liquid crystal adaptive optics system for unpolarized light,” Proc. SPIE 7209, 72090P(2009).
[CrossRef]

Zhou, Y.

Appl. Opt. (10)

M. A. van Dam, D. Le Mignant, and B. A. Macintosh, “Performance of the Keck Observatory adaptive-optics system,” Appl. Opt. 43, 5458–5467 (2004).
[CrossRef] [PubMed]

M. Vorontsov, J. Riker, G. Carhart, V. S. Gudimetla, L. Beresnev, T. Weyrauch, and L. C. Roberts, Jr., “Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63m telescope,” Appl. Opt. 48, A47–57 (2009).
[CrossRef]

G. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
[CrossRef] [PubMed]

N. Collings, W. Crossland, P. Ayliffe, D. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747(1989).
[CrossRef] [PubMed]

J. Schmidt, M. Goda, and B. Duncan, “Aberration production using a high-resolution liquid-crystal spatial light modulator,” Appl. Opt. 46, 2423–2433 (2007).
[CrossRef] [PubMed]

G. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
[CrossRef] [PubMed]

T. L. Kelly and G. D. Love, “White-light performance of a polarization-independent liquid-crystal phase modulator,” Appl. Opt. 38, 1986–1989 (1999).
[CrossRef]

D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 2345–2355 (2001).
[CrossRef]

Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Open-loop correction of horizontal turbulence: system design and result,” Appl. Opt. 47, 4297–4301 (2008).
[CrossRef] [PubMed]

M. Gruneisen, R. Dymale, and M. Garvin, “Wavelength-dependent characteristics of modulo Nλ0 optical wavefront control,” Appl. Opt. 45, 4075–4083 (2006).
[CrossRef] [PubMed]

Astron. Astrophys. (1)

M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

J. Opt. (1)

L. Hu, X. Li, Q. Mu, Z. Cao, D. Li, Y. Liu, Z. Peng, and X. Lu, “A polarization independent liquid crystal adaptive optics system,” J. Opt. 12, 045501 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (1)

L. Thibos, R. Applegate, J. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Opt. Commun. (2)

Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “Improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283, 946–950(2010).
[CrossRef]

J. Gourlay, G. Love, P. Birch, R. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Opt. Eng. (1)

M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005).
[CrossRef]

Opt. Express (8)

D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
[CrossRef] [PubMed]

S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6, 2–6 (2000).
[CrossRef] [PubMed]

Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, “Correction of horizontal turbulence with nematic liquid crystal wavefront corrector,” Opt. Express 16, 7006–7013 (2008).
[CrossRef] [PubMed]

Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537(2009).
[CrossRef] [PubMed]

D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, and N. Heimann, “Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites,” Opt. Express 10, 1508–1519 (2002).
[PubMed]

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12, 6403–6409 (2004).
[CrossRef] [PubMed]

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009).
[CrossRef] [PubMed]

P. Prieto, E. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (10)

S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003).
[CrossRef]

D. Cai, J. Yao, and W. Jiang, “Liquid crystal adaptive optics system for unpolarized light,” Proc. SPIE 7209, 72090P(2009).
[CrossRef]

M. K. Giles, A. J. Seward, and T. M. Giles, “Closed-loop phase-contrast adaptive optics system using liquid crystal phase modulators: experimental results,” Proc. SPIE 4493, 174–183(2002).
[CrossRef]

C. Boyer, V. Michau, and G. Rousset, “Adaptive optics: interaction matrix measurements and real time control algorithms for the Come-On project,” Proc. SPIE 1542, 46–61(1991).
[CrossRef]

K. Morzinski, K. Harpse, D. Gavel, and S. Ammons, “The open-loop control of MEMS: modeling and experimental results,” Proc. SPIE 6467, 64670G (2007).
[CrossRef]

D. T. Gavel, “Adaptive optics control strategies for extremely large telescopes,” Proc. SPIE 4494, 215–220 (2002).
[CrossRef]

P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990).
[CrossRef]

H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998).
[CrossRef]

W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999).
[CrossRef]

A. Iriarte, S. Cuevas, J. E. Graves, and M. Northcott, “Adaptive secondary for the 2.1m Telescope at SPM Observatory,” Proc. SPIE 4007, 537–546 (2000).
[CrossRef]

Quantum Electron. (1)

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (3898 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of splitting the light by spectral content and compensating each separately: CF1 and CF2, color films; LCOS633 and LCOS785, LCOS devices.

Fig. 2
Fig. 2

Schematic diagrams of open- and closed-loop optical systems: (a) conventional open-loop optical system, (b) conventional closed-loop optical system, (c) a new open-loop optical system, (d) new closed-loop optical system. PBS, polarizing beam splitter; BS, nonpolarizing beam splitter; WFS, wavefront sensor; λ / 4 , quarter-wave plate.

Fig. 3
Fig. 3

Optical layout for an open-loop AO system: L 1 L 5 , lenses; M 1 M 4 , mirrors; TTM, tip–tilt mirror.

Fig. 4
Fig. 4

Schematic diagram of the arrangement of WFS lenslets with respect to the LCOS pixels.

Fig. 5
Fig. 5

Optical layout of measuring the interaction matrix of LCOS633.

Fig. 6
Fig. 6

Block diagram of the control system for correcting the vertical turbulence wavefront.

Fig. 7
Fig. 7

Representation of the 2.16 m telescope located at Xinglong Station of Beijing Astronomy Observatory: (a) optical diagram and (b) photograph of the telescope.

Fig. 8
Fig. 8

(a) Connection of the optical setup between the telescope and AO system; (b) detailed diagram of the double LCOSs.

Fig. 9
Fig. 9

Experimental layout of the open-loop AO system based on LCOSs.

Fig. 10
Fig. 10

Fried parameter r 0 measured on 23 April 2010 in Xinglong Station of Beijing Astronomy Observatory. The zero of the time axis (start time) is 01:37:02 (Beijing time).

Fig. 11
Fig. 11

Images of star α Boo captured with a CCD camera with an exposure time of 30 ms : (a) without correction and (b) with the open-loop correction (Media 1).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

s j = [ s 1 j x , s 2 j y , , s k j x , s k j y , , s K j x , s K j y ] T ,
IM = [ s 1 , , s j , , s J ] .
s ¯ x = ( k = 1 K s k x ) / K , s ¯ y = ( k = 1 K s k y ) / K , s ¯ = [ s ¯ x , s ¯ y ] T ,
s = [ s 1 x , s 1 y , , s k x , s k y , , s K x , s K y ] .
v = IM TTM 1 s ¯ ,
V ( n ) = V ( n 1 ) k G · v ,
s = [ ( s 1 x s ¯ x ) , ( s 1 y s ¯ y ) , , ( s k x s ¯ x ) , ( s k y s ¯ y ) , ( s K x s ¯ x ) , ( s K y s ¯ y ) ] T .
c = IM + s , ψ = i = 1 J c i Z i , gm = mod ( ψ ) ,
σ 2 = ( f G / f 3 dB ) 5 / 3 ,

Metrics