Abstract

A promising scheme for the remote detection of nitrate-based explosives, which have low vapor pressure, involves two lasers: the first to desorb, vaporize, and photofragment the explosive molecule and the second to create laser-induced fluorescence in the NO fragment. It is desirable to use for the first a powerful 532nm frequency-doubled Nd:YAG laser. In this study, we investigate the degree of photofragmentation into NO resulting from the irradiation of the explosives RDX and HMX coated on a variety of surfaces. The desorption step is followed by femtosecond laser ionization and time-of-flight mass spectrometry to reveal the fragments produced in the first step. We find that modest laser power of 532nm desorbs the explosive and produces adequate amounts of NO.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Ann. Rev. Phys. Chem. 49, 203–232 (1998).
    [CrossRef]
  2. S. Wallin, A. Pettersson, H. Őstmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
    [CrossRef] [PubMed]
  3. S. Grossman, “Determination of 2, 4, 6-trinitrotoluene contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005).
    [CrossRef]
  4. C. Ramos and P. J. Dagdigian, “Detection of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy,” Appl. Opt. 46, 620–627 (2007).
    [CrossRef] [PubMed]
  5. T. G. Slanger, W. K. Bischel, and M. J. Dyer, “Nascent NO vibrational distribution from 2485 NO2 photodissociation,” J. Chem. Phys. 79, 2231–2240 (1983).
    [CrossRef]
  6. G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
    [CrossRef]
  7. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-Titrotoluene detection by laser-photofragmentation—laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
    [CrossRef] [PubMed]
  8. V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation—fragment detection and pyrolysis laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
    [CrossRef]
  9. J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710(1999).
    [CrossRef]
  10. J. Shu, I. Bar, and S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
    [CrossRef]
  11. J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphates,” Appl. Phys. B 71, 665–672 (2000).
    [CrossRef]
  12. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001).
    [CrossRef]
  13. D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002).
    [CrossRef]
  14. J. Cabalo and R. Sausa, “Detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by laser surface photofragmentation—fragment detection spectroscopy,” Appl. Spectrosc. 57, 1196–1199 (2003).
    [CrossRef] [PubMed]
  15. J. Cabalo and R. Sausa, “Trace detection of explosives with low vapor emissions by laser surface photofragmentation—fragment detection spectroscopy with an improved ionization probe,” Appl. Opt. 44, 1084–1091 (2005).
    [CrossRef] [PubMed]
  16. C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47, 5767–5776 (2008).
    [CrossRef]
  17. A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
    [CrossRef]
  18. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
    [CrossRef]
  19. C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
    [CrossRef]
  20. K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
    [CrossRef]
  21. H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
    [CrossRef]
  22. C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
    [CrossRef]
  23. S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
    [CrossRef]
  24. B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
    [CrossRef]
  25. C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
    [CrossRef] [PubMed]
  26. NIST Mass Spec Data Center, S. E. Stein director, “Mass spectra,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J.Linstrom and W.G.Mallard, eds., National Institute of Standards and Technology, Gaithersburg, MD, 20899, http://webbook.nist.gov.
  27. C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
    [CrossRef]
  28. A. Roos, C. G. Ribbing, and B. Karlsson, “Stainless steel solar mirrors—a material feasibility study,” Sol. Energy Mater. 18, 233–240 (1989).
    [CrossRef]

2009 (2)

S. Wallin, A. Pettersson, H. Őstmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Cabalo and R. Sausa, “Trace detection of explosives with low vapor emissions by laser surface photofragmentation—fragment detection spectroscopy with an improved ionization probe,” Appl. Opt. 44, 1084–1091 (2005).
[CrossRef] [PubMed]

S. Grossman, “Determination of 2, 4, 6-trinitrotoluene contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005).
[CrossRef]

2003 (1)

2002 (2)

D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002).
[CrossRef]

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

2001 (1)

2000 (2)

J. Shu, I. Bar, and S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

1999 (2)

1998 (1)

J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Ann. Rev. Phys. Chem. 49, 203–232 (1998).
[CrossRef]

1997 (2)

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

1996 (1)

1995 (1)

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

1994 (2)

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

1993 (1)

G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

1992 (1)

A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
[CrossRef]

1989 (1)

A. Roos, C. G. Ribbing, and B. Karlsson, “Stainless steel solar mirrors—a material feasibility study,” Sol. Energy Mater. 18, 233–240 (1989).
[CrossRef]

1983 (1)

T. G. Slanger, W. K. Bischel, and M. J. Dyer, “Nascent NO vibrational distribution from 2485 NO2 photodissociation,” J. Chem. Phys. 79, 2231–2240 (1983).
[CrossRef]

Arusi-Parpar, T.

Bar, I.

J. Shu, I. Bar, and S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710(1999).
[CrossRef]

Bischel, W. K.

T. G. Slanger, W. K. Bischel, and M. J. Dyer, “Nascent NO vibrational distribution from 2485 NO2 photodissociation,” J. Chem. Phys. 79, 2231–2240 (1983).
[CrossRef]

Briggs, K.

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

Cabalo, J.

Clark, A.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
[CrossRef]

Clow, K.

Coggiola, M. J.

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
[CrossRef] [PubMed]

Crosley, D. R.

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

Dagdigian, P. J.

Deas, R. M.

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

Dyer, M. J.

T. G. Slanger, W. K. Bischel, and M. J. Dyer, “Nascent NO vibrational distribution from 2485 NO2 photodissociation,” J. Chem. Phys. 79, 2231–2240 (1983).
[CrossRef]

Fang, X.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Grossman, S.

S. Grossman, “Determination of 2, 4, 6-trinitrotoluene contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005).
[CrossRef]

Hankin, S. M.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Heflinger, D.

Hobro, A.

S. Wallin, A. Pettersson, H. Őstmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

Huestis, D. L.

C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
[CrossRef] [PubMed]

Irwin, A.

C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
[CrossRef] [PubMed]

Isaac, R. C.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Jamison, S.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Jaroszynski, D. A.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Jennings, R.

A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
[CrossRef]

Jones, D. R.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Karlsson, B.

A. Roos, C. G. Ribbing, and B. Karlsson, “Stainless steel solar mirrors—a material feasibility study,” Sol. Energy Mater. 18, 233–240 (1989).
[CrossRef]

Kilic, H. S.

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

Kosmidis, C.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

Kunz, R. R.

Langley, A. J.

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

Lavi, R.

Ledingham, K. W. D.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
[CrossRef]

Lemire, G. W.

G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Marshall, A.

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
[CrossRef]

McCanny, T.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

McKenna, P.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Monts, D. L.

Mullen, C.

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
[CrossRef] [PubMed]

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

Oser, H.

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
[CrossRef] [PubMed]

Ostmark, H.

S. Wallin, A. Pettersson, H. Őstmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

Palmacci, S.

Pettersson, A.

S. Wallin, A. Pettersson, H. Őstmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

Pond, B. V.

C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
[CrossRef] [PubMed]

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

Ramos, C.

Ribbing, C. G.

A. Roos, C. G. Ribbing, and B. Karlsson, “Stainless steel solar mirrors—a material feasibility study,” Sol. Energy Mater. 18, 233–240 (1989).
[CrossRef]

Ron, Y.

D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002).
[CrossRef]

Roos, A.

A. Roos, C. G. Ribbing, and B. Karlsson, “Stainless steel solar mirrors—a material feasibility study,” Sol. Energy Mater. 18, 233–240 (1989).
[CrossRef]

Rosenwaks, S.

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710(1999).
[CrossRef]

Rothschild, M.

Sander, J.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
[CrossRef]

Sausa, R.

Sausa, R. C.

V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation—fragment detection and pyrolysis laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Shaikh, W.

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

Shu, J.

J. Shu, I. Bar, and S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710(1999).
[CrossRef]

Simeonsson, J. B.

G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Singh, G.

Singh, J. P.

Singhai, R. P.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Singhal, R. P.

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
[CrossRef]

Slanger, T. G.

T. G. Slanger, W. K. Bischel, and M. J. Dyer, “Nascent NO vibrational distribution from 2485 NO2 photodissociation,” J. Chem. Phys. 79, 2231–2240 (1983).
[CrossRef]

Smith, D. J.

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

Stein, S. E.

NIST Mass Spec Data Center, S. E. Stein director, “Mass spectra,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J.Linstrom and W.G.Mallard, eds., National Institute of Standards and Technology, Gaithersburg, MD, 20899, http://webbook.nist.gov.

Steinfeld, J. I.

J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Ann. Rev. Phys. Chem. 49, 203–232 (1998).
[CrossRef]

Suarez, J.

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

Swayambunathan, V.

Tasker, A. D.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Tzallas, P.

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Wallin, S.

S. Wallin, A. Pettersson, H. Őstmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

Wang, S. L.

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

Wormhoudt, J.

J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Ann. Rev. Phys. Chem. 49, 203–232 (1998).
[CrossRef]

Wu, D.

Wynn, C. M.

Young, S. E.

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

Yueh, F. Y.

Anal. Bioanal. Chem. (1)

S. Wallin, A. Pettersson, H. Őstmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

Anal. Chem. (2)

G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006).
[CrossRef] [PubMed]

Ann. Rev. Phys. Chem. (1)

J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Ann. Rev. Phys. Chem. 49, 203–232 (1998).
[CrossRef]

Appl. Opt. (7)

T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001).
[CrossRef]

J. Cabalo and R. Sausa, “Trace detection of explosives with low vapor emissions by laser surface photofragmentation—fragment detection spectroscopy with an improved ionization probe,” Appl. Opt. 44, 1084–1091 (2005).
[CrossRef] [PubMed]

C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47, 5767–5776 (2008).
[CrossRef]

D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-Titrotoluene detection by laser-photofragmentation—laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
[CrossRef] [PubMed]

V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation—fragment detection and pyrolysis laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710(1999).
[CrossRef]

C. Ramos and P. J. Dagdigian, “Detection of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy,” Appl. Opt. 46, 620–627 (2007).
[CrossRef] [PubMed]

Appl. Phys. B (3)

J. Shu, I. Bar, and S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006).
[CrossRef]

Appl. Spectrosc. (1)

Int. J. Mass Spectrom. Ion Proc. (1)

A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992).
[CrossRef]

J. Am. Soc. Mass Spectrom. (1)

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

J. Chem. Phys. (1)

T. G. Slanger, W. K. Bischel, and M. J. Dyer, “Nascent NO vibrational distribution from 2485 NO2 photodissociation,” J. Chem. Phys. 79, 2231–2240 (1983).
[CrossRef]

J. Phys. Chem. A (2)

H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997).
[CrossRef]

Opt. Commun. (1)

D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002).
[CrossRef]

Proc. SPIE (1)

S. Grossman, “Determination of 2, 4, 6-trinitrotoluene contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005).
[CrossRef]

Rapid Commun. Mass Spectrom. (4)

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995).
[CrossRef]

S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002).
[CrossRef]

Sol. Energy Mater. (1)

A. Roos, C. G. Ribbing, and B. Karlsson, “Stainless steel solar mirrors—a material feasibility study,” Sol. Energy Mater. 18, 233–240 (1989).
[CrossRef]

Other (1)

NIST Mass Spec Data Center, S. E. Stein director, “Mass spectra,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J.Linstrom and W.G.Mallard, eds., National Institute of Standards and Technology, Gaithersburg, MD, 20899, http://webbook.nist.gov.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental apparatus used. It consists of an experimental chamber containing the manipulator, sample stage, and TOFMS. The desorption laser is directed onto the surface at 45 ° , and the ionization laser is positioned 1 mm above the surface.

Fig. 2
Fig. 2

A, B, Mass spectra of RDX, obtained using the 2 × 10 7 W / cm 2 desorption power from SS and Al surfaces, respectively. The numbered peaks are identified in Table 4. The peaks at 30 amu , labeled no. 7, show the NO photofragment, the object of this study. The insets show the region near the mass of the parent ion, indicating that it is missing and thus fully fragmented. C, Electron impact mass spectrum [26], shown for comparison. In this last spectrum, mass 56 is seen, although there is no iron surface present; thus, this mass peak, that in B, and perhaps part of that in A are due to the C NNO fragment. There are peaks of mass greater than 100 in the electron impact spectrum (not shown) but none in the photoionization spectrum.

Fig. 3
Fig. 3

Same as Fig. 2, but for HMX. Here the peaks marked by the asterisks in A are artifacts from the surface, appearing here misplaced in mass due to peculiar triggering problems in this scan.

Tables (4)

Tables Icon

Table 1 Explosives Studied

Tables Icon

Table 2 Comparison of Stainless Steel and Aluminum Signal Levels

Tables Icon

Table 3 Comparison of Signals from 532 and 1064 nm Laser Wavelengths

Tables Icon

Table 4 Identification of Peaks in Figs. 2, 3

Metrics