Abstract

We investigated the photon-number-resolving (PNR) performance of the InGaAs/InP avalanche photodiode (APD) as a function of the electric gate width and the photon arrival time. The optimal electric gate width was around 1ns for PNR measurements in our experiment, which provided a PNR capability up to three photons per pulse when the detection efficiency was 20%. And the dependence of the PNR performance on the arrival time of the photons showed that the photon number could be better resolved if the photons arrived on the rising edge of the electric gate than on the falling edge. In addition, we found that with the increase of the electric gate width, PNR performance got worse. The observation would be helpful for improving the PNR performance of the InGaAs/InP APD in the gated mode.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999).
    [CrossRef]
  2. A. Miller, S. Nam, J. Martinis, and A. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793(2003).
    [CrossRef]
  3. D. Achilles, D. Silberhorn, C. Sliwa, K. Banaszek, and I. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28, 2387–2390 (2003).
    [CrossRef] [PubMed]
  4. D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
    [CrossRef] [PubMed]
  5. A. Lita, A. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040(2008).
    [CrossRef] [PubMed]
  6. F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
    [CrossRef]
  7. P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]
  8. E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004).
    [CrossRef] [PubMed]
  9. P. Ambrico, A. Amodeo, P. Girolamo, and N. Spinelli, “Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region,” Appl. Opt. 39, 6847–6865 (2000).
    [CrossRef]
  10. A. Berglund, A. Doherty, and H. Mabuchi, “Photon statistics and dynamics of fluorescence resonance energy transfer,” Phys. Rev. Lett. 89, 068101 (2002).
    [CrossRef] [PubMed]
  11. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
    [CrossRef]
  12. G. Wu, C. Zhou, X. Chen, and H. Zeng, “High performance of gated-mode single-photon detector at 1.55μm,” Opt. Commun. 265, 126–131 (2006).
    [CrossRef]
  13. P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008).
    [CrossRef]
  14. Z. Yuan, B. Kardynal, A. Sharpe, and A. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
    [CrossRef]
  15. B. Kardynal, Z. Yuan, and A. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photon. 2, 425–428 (2008).
    [CrossRef]
  16. L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
    [CrossRef]
  17. X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
    [CrossRef]
  18. G. Wu, Y. Jian, E. Wu, and H. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009).
    [CrossRef]
  19. Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96, 191107 (2010).
    [CrossRef]
  20. M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
    [CrossRef]
  21. O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010).
    [CrossRef]

2010 (2)

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96, 191107 (2010).
[CrossRef]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

2009 (4)

G. Wu, Y. Jian, E. Wu, and H. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
[CrossRef]

X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
[CrossRef]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

2008 (3)

P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008).
[CrossRef]

B. Kardynal, Z. Yuan, and A. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photon. 2, 425–428 (2008).
[CrossRef]

A. Lita, A. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040(2008).
[CrossRef] [PubMed]

2007 (4)

Z. Yuan, B. Kardynal, A. Sharpe, and A. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

2006 (1)

G. Wu, C. Zhou, X. Chen, and H. Zeng, “High performance of gated-mode single-photon detector at 1.55μm,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

2004 (2)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Miller, S. Nam, J. Martinis, and A. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793(2003).
[CrossRef]

D. Achilles, D. Silberhorn, C. Sliwa, K. Banaszek, and I. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28, 2387–2390 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Berglund, A. Doherty, and H. Mabuchi, “Photon statistics and dynamics of fluorescence resonance energy transfer,” Phys. Rev. Lett. 89, 068101 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999).
[CrossRef]

Achilles, D.

Ambrico, P.

Amodeo, A.

Banaszek, K.

Bartlett, S.

E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

Ben-Michael, R.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

Berglund, A.

A. Berglund, A. Doherty, and H. Mabuchi, “Photon statistics and dynamics of fluorescence resonance energy transfer,” Phys. Rev. Lett. 89, 068101 (2002).
[CrossRef] [PubMed]

Bitauld, D.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Blais, A.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Chen, X.

X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
[CrossRef]

G. Wu, C. Zhou, X. Chen, and H. Zeng, “High performance of gated-mode single-photon detector at 1.55μm,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Cova, S.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

Devoret, M.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Diamanti, E.

E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

Doherty, A.

A. Berglund, A. Doherty, and H. Mabuchi, “Photon statistics and dynamics of fluorescence resonance energy transfer,” Phys. Rev. Lett. 89, 068101 (2002).
[CrossRef] [PubMed]

Dowling, J.

P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Dynes, J. F.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96, 191107 (2010).
[CrossRef]

Fiore, A.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Frunzio, L.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Gaggero, A.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Gambetta, J.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Girolamo, P.

Girvin, S.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Gu, X.

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
[CrossRef]

Hogue, H.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999).
[CrossRef]

Houck, A.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Hsu, C. F.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

Ispasoiu, R.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

Itzler, M. A.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

Jahamirinejad, S.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Jian, Y.

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
[CrossRef]

G. Wu, Y. Jian, E. Wu, and H. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009).
[CrossRef]

Johnson, B.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

Kardynal, B.

B. Kardynal, Z. Yuan, and A. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photon. 2, 425–428 (2008).
[CrossRef]

Z. Yuan, B. Kardynal, A. Sharpe, and A. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

Kim, J.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999).
[CrossRef]

Kok, P.

P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Leoni, R.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Li, C.

P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008).
[CrossRef]

Liang, Y.

X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
[CrossRef]

Liao, C.

P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008).
[CrossRef]

Lita, A.

Mabuchi, H.

A. Berglund, A. Doherty, and H. Mabuchi, “Photon statistics and dynamics of fluorescence resonance energy transfer,” Phys. Rev. Lett. 89, 068101 (2002).
[CrossRef] [PubMed]

Majer, J.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Marrioli, F.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Marsili, F.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Martinis, J.

A. Miller, S. Nam, J. Martinis, and A. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793(2003).
[CrossRef]

Milburn, G.

P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Miller, A.

A. Lita, A. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040(2008).
[CrossRef] [PubMed]

A. Miller, S. Nam, J. Martinis, and A. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793(2003).
[CrossRef]

Munro, W.

P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nam, S.

A. Lita, A. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040(2008).
[CrossRef] [PubMed]

A. Miller, S. Nam, J. Martinis, and A. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793(2003).
[CrossRef]

Nemoto, K.

P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Ralph, T.

P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Sanders, B.

E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

Schoelkopf, R.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Schreier, J.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Schuster, D.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Sergienko, A.

A. Miller, S. Nam, J. Martinis, and A. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793(2003).
[CrossRef]

Sharpe, A.

Z. Yuan, B. Kardynal, A. Sharpe, and A. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

Sharpe, A. W.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96, 191107 (2010).
[CrossRef]

Shields, A.

B. Kardynal, Z. Yuan, and A. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photon. 2, 425–428 (2008).
[CrossRef]

Z. Yuan, B. Kardynal, A. Sharpe, and A. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

Shields, A. J.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96, 191107 (2010).
[CrossRef]

Silberhorn, D.

Sliwa, C.

Slomkowski, K.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

Spinelli, N.

Takeuchi, S.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999).
[CrossRef]

Thomas, O.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Tosi, A.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

Waks, E.

E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

Wallraff, A.

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

Walmsley, I.

Wei, Z.

P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008).
[CrossRef]

Wu, E.

X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
[CrossRef]

G. Wu, Y. Jian, E. Wu, and H. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
[CrossRef]

Wu, G.

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
[CrossRef]

G. Wu, Y. Jian, E. Wu, and H. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009).
[CrossRef]

X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
[CrossRef]

G. Wu, C. Zhou, X. Chen, and H. Zeng, “High performance of gated-mode single-photon detector at 1.55μm,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Xu, L.

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
[CrossRef]

X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
[CrossRef]

Yamamoto, Y.

E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999).
[CrossRef]

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

Yuan, S.

P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008).
[CrossRef]

Yuan, Z.

B. Kardynal, Z. Yuan, and A. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photon. 2, 425–428 (2008).
[CrossRef]

Z. Yuan, B. Kardynal, A. Sharpe, and A. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

Yuan, Z. L.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96, 191107 (2010).
[CrossRef]

Zappa, F.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

Zeng, H.

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
[CrossRef]

X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
[CrossRef]

G. Wu, Y. Jian, E. Wu, and H. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009).
[CrossRef]

G. Wu, C. Zhou, X. Chen, and H. Zeng, “High performance of gated-mode single-photon detector at 1.55μm,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Zhou, C.

G. Wu, C. Zhou, X. Chen, and H. Zeng, “High performance of gated-mode single-photon detector at 1.55μm,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Zhou, P.

P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999).
[CrossRef]

A. Miller, S. Nam, J. Martinis, and A. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793(2003).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009).
[CrossRef]

X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96, 191107 (2010).
[CrossRef]

Z. Yuan, B. Kardynal, A. Sharpe, and A. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

J. Mod. Opt. (1)

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008).
[CrossRef]

Nat. Photon. (1)

B. Kardynal, Z. Yuan, and A. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photon. 2, 425–428 (2008).
[CrossRef]

Nature (1)

D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007).
[CrossRef] [PubMed]

New J. Phys. (1)

F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Opt. Commun. (1)

G. Wu, C. Zhou, X. Chen, and H. Zeng, “High performance of gated-mode single-photon detector at 1.55μm,” Opt. Commun. 265, 126–131 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004).
[CrossRef] [PubMed]

A. Berglund, A. Doherty, and H. Mabuchi, “Photon statistics and dynamics of fluorescence resonance energy transfer,” Phys. Rev. Lett. 89, 068101 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup of the optical self-differential single-photon detector: APD, avalanche photodiode; LD, distributed feedback laser diode emitting at 1550 nm ; EDFA, erbium-doped fiber amplifier; IF, inline fiber filter at 1550 nm with passbandwidth of 3 nm ; PC, fiber polarization controller; PBS: fiber polarization beam splitter; PD 1 , 2 PIN, photodiodes, FODL, variable fiber optical delay line.

Fig. 2
Fig. 2

Photon count rate as a function of delay time between the light pulse and gating pulse. Point a 0.12 ns delay, Point b 0.04 ns , Point c 0 ns , Point d 0.04 ns , Point e 0.10 ns and Point f 0.14 ns .

Fig. 3
Fig. 3

Distribution of avalanche peak output voltage of 350 ps effective detection gate, where (a)–(f) show the distributions of the different delay time of the light pulse in the effective detection gate, corresponding to Points a–f in Fig. 2.

Fig. 4
Fig. 4

Color grading waveform of the APD response. The inset figure is the distribution of peak output voltage.

Fig. 5
Fig. 5

(a) FOM over detection efficiency as a function of delay time between the light pulse and the effective detection gate at 0.10 , 0.04, 0.10, and 0.20 ns , respectively. (b) FOM as a function of the electric gate width from 600 ps to 3.6 ns .

Fig. 6
Fig. 6

Distribution of avalanche peak output voltage of 1.1 ns effective detection gate. (a) μ = 1.46 , (b) μ = 1.03 .

Tables (1)

Tables Icon

Table 1 Peak Output Voltage Characteristics at 350 ps Effective Detection Gate

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( V ) = n = 0 p ( μ , n ) · ρ ( n , V ) ,

Metrics