Abstract

Airy beams are attractive owing to their two intriguing properties—self-bending and nondiffraction—that are particularly helpful for optical manipulation of particles. We perform theoretical and experimental investigations into the focusing property of Airy beams and provide insight into the trapping ability of tightly focused Airy beams. Experiment on optical tweezers demonstrates that the focused Airy beams can create multiple traps for two-dimensional confining particles, and the stable traps exist in the vicinity of the main intensity lobes in the focused beams. The trapping pattern can be varied with changes in the cross section of the focused beam. The focused Airy beam offers a novel way of optically manipulating microparticles.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
    [CrossRef] [PubMed]
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
    [CrossRef]
  3. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
    [CrossRef]
  4. J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
    [CrossRef] [PubMed]
  5. P. Polynkin, M. Kolesik, J. V. Moloney, G. Siviloglou, and D. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
    [CrossRef] [PubMed]
  6. P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
    [CrossRef] [PubMed]
  7. A. Chong, W. H. Renninger, D. Christodoulides, and F. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4, 103–106 (2010).
    [CrossRef]
  8. I. Besieris and A. Shaarawi, “A note on an accelerating finite energy Airy beam,” Opt. Lett. 32, 2447–2449 (2007).
    [CrossRef] [PubMed]
  9. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  10. J. Broky, G. Siviloglou, A. Dogariu, and D. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
    [CrossRef] [PubMed]
  11. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
    [CrossRef]
  12. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
    [CrossRef] [PubMed]
  13. B. Richards and E. Wolf, “Electromagnetic diffraction in optics systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379(1959).
    [CrossRef]
  14. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277–11291(2006).
    [CrossRef] [PubMed]

2010 (1)

A. Chong, W. H. Renninger, D. Christodoulides, and F. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4, 103–106 (2010).
[CrossRef]

2009 (3)

J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
[CrossRef] [PubMed]

P. Polynkin, M. Kolesik, J. V. Moloney, G. Siviloglou, and D. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef] [PubMed]

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

J. Broky, G. Siviloglou, A. Dogariu, and D. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (1)

2002 (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

1986 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optics systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379(1959).
[CrossRef]

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Ashkin, A.

Baumgartl, J.

J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
[CrossRef] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

Besieris, I.

Bjorkholm, J.

Broky, J.

J. Broky, G. Siviloglou, A. Dogariu, and D. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Chong, A.

A. Chong, W. H. Renninger, D. Christodoulides, and F. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4, 103–106 (2010).
[CrossRef]

Christodoulides, D.

A. Chong, W. H. Renninger, D. Christodoulides, and F. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4, 103–106 (2010).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. Siviloglou, and D. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef] [PubMed]

J. Broky, G. Siviloglou, A. Dogariu, and D. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
[CrossRef] [PubMed]

Christodoulides, D. N.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[CrossRef] [PubMed]

Chu, S.

Day, D.

J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
[CrossRef] [PubMed]

Dholakia, K.

J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
[CrossRef] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Dogariu, A.

J. Broky, G. Siviloglou, A. Dogariu, and D. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Dziedzic, J.

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Gu, M.

J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
[CrossRef] [PubMed]

Hannappe, G.

J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
[CrossRef] [PubMed]

Kolesik, M.

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef] [PubMed]

P. Polynkin, M. Kolesik, J. V. Moloney, G. Siviloglou, and D. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef] [PubMed]

Lasser, T.

Leitgeb, R. A.

Leutenegger, M.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

McGloin, D.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

Moloney, J.

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef] [PubMed]

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. Siviloglou, and D. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef] [PubMed]

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. Siviloglou, and D. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef] [PubMed]

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef] [PubMed]

Rao, R.

Renninger, W. H.

A. Chong, W. H. Renninger, D. Christodoulides, and F. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4, 103–106 (2010).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optics systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379(1959).
[CrossRef]

Shaarawi, A.

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Siviloglou, G.

P. Polynkin, M. Kolesik, J. V. Moloney, G. Siviloglou, and D. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef] [PubMed]

J. Broky, G. Siviloglou, A. Dogariu, and D. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
[CrossRef] [PubMed]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[CrossRef] [PubMed]

Stevenson, D.

J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
[CrossRef] [PubMed]

Wise, F.

A. Chong, W. H. Renninger, D. Christodoulides, and F. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4, 103–106 (2010).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optics systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379(1959).
[CrossRef]

Lab Chip (1)

J. Baumgartl, G. Hannappe, D. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 91334–1336 (2009).
[CrossRef] [PubMed]

Nat. Photon. (2)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

A. Chong, W. H. Renninger, D. Christodoulides, and F. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4, 103–106 (2010).
[CrossRef]

Nature (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optics systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379(1959).
[CrossRef]

Science (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. Siviloglou, and D. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated intensity distribution of a focused, 2D Airy beam at positions of (a) 50 λ , (b) 20 λ , (c) 0, (d) + 20 λ , and (e) + 50 λ with respect to the focus. Minus and positive signs represent locations before and after the focus, respectively.

Fig. 2
Fig. 2

Intensity distribution of a focused Airy beam across the x z plane. The focused Airy beam exhibits a transverse shift during propagation, as indicated by the white overlaid, dashed line.

Fig. 3
Fig. 3

Numerically simulated self-reconstruction in the focal region of distorted Airy beams with their mainlobes blocked. The mainlobe at the corner of the focused Airy beam is blocked at positions of (a) 50 λ , with its evolution at (b) 20 λ , (c) 0, (d) + 20 λ , and (e) + 50 λ with respect to the focus. An evolution of a distorted Airy beam that has a 3 × 3 lobe portion of the beam around its corner blocked are shown in (f)–(j) for five positions.

Fig. 4
Fig. 4

Numerically calculated intensity gradient in the transverse plane planes at (a) 50 λ , (b) 50 λ , (c) 0, (d) + 20 λ , and (e) + 50 λ of the focused Airy beam given in Fig. 1. The length of the arrows on the diagram indicates the relative magnitude of the intensity gradient. The intensity of the focused Airy field is shown in the background of each frame.

Fig. 5
Fig. 5

Experimental setup for generation of focused Airy beams and optical trapping. The inset shows a picture of the Airy beam generated from the spatial light modulator (SLM). BE, beam expander; P, polarizer; BS, beam splitter; L, spherical lens with focal length f; RT, reverse telescope; DM, dichroic mirror, which transmits the laser wavelength while reflecting the illumination wavelength.

Fig. 6
Fig. 6

CCD recorded intensity of the focused Airy beam through a spherical lens with a focal length of 100 mm . The intensity is captured in planes at five different axial positions: (a) and (b) before the focus, (c) at the focus, and (d) and (e) after the focus.

Fig. 7
Fig. 7

Observed evolution of a distorted Airy beam in the same focusing system as in Fig. 6. The beam has its mainlobe at the corner blocked at a position before the focus, and gives rise to intensity cross-sections (a) at the focus and (b) and (c) after the focus.

Fig. 8
Fig. 8

Image of particles trapped in the focused Airy beam. Trapping takes place in transverse planes (a) before the focus, (b) at the focus, and (c) after the focus.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z ) = i f λ k t 2 F T { E t ( θ , φ ) e i k z z / cos θ } ,
u ( S x , S y , ξ ) = Ai ( S x ( ξ / 2 ) 2 + i a ξ ) Ai ( S y ( ξ / 2 ) 2 + i a ξ ) × exp [ a S x + a S y ( a ξ 2 / 2 ) i ( ξ 3 / 6 ) i ( a 2 ξ / 2 ) + i ξ ( S x + S y ) / 2 ] ,
u ( S x , S y , 0 ) = Ai ( S x ) Ai ( S y ) exp ( a S x + a S y ) ,
F = η | E | 2 ,

Metrics