Abstract

We demonstrate microstructuring of chalcogenide fiber facets in order to obtain enhanced transmission due to the antireflective properties of the microstructured surfaces. A variety of molding approaches have been investigated for As2S3 and As3Se3 fibers. Transmission as high as 97% per facet was obtained in the case of As2S3 fiber, compared to the native, Fresnel-loss limited, transmission of 83%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 1, pp. 54–74.
  2. P. van de Werf and J. Haisma, “Broadband antireflective coatings for fiber-communication optics,” Appl. Opt. 23, 499–503 (1984).
    [CrossRef]
  3. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
    [CrossRef]
  4. A. B. Harker and J. F. DeNatale, “Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
    [CrossRef]
  5. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992).
    [CrossRef] [PubMed]
  6. C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386(1962).
    [CrossRef] [PubMed]
  7. D. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364(2005).
    [CrossRef]
  8. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
    [CrossRef]
  9. M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 596502 (2005).
    [CrossRef]
  10. Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34, 1702–1704 (2009).
    [CrossRef] [PubMed]
  11. “Damage threshold at 10.6μm in AMTIR2 glass for example was almost two times larger when patterned with motheye structure compared to when the substrate is left bare,” TelAztec (personal communication, 2010).
  12. C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B 51, 92–99(1998).
    [CrossRef]
  13. G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on optical fiber end faces for chemical sensing,” Proc. SPIE 7004, 70042H(2008).
    [CrossRef]
  14. J. Viheriala, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43, 150–151 (2007).
    [CrossRef]
  15. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695–2706 (1994).
    [CrossRef] [PubMed]
  16. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [CrossRef] [PubMed]
  17. G. Ehret, E. Buhr, S. Gabler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, S840(2009).
    [CrossRef]
  18. The period, or feature separation, is around 920nm.
  19. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
    [CrossRef]

2009

Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34, 1702–1704 (2009).
[CrossRef] [PubMed]

G. Ehret, E. Buhr, S. Gabler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, S840(2009).
[CrossRef]

2008

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on optical fiber end faces for chemical sensing,” Proc. SPIE 7004, 70042H(2008).
[CrossRef]

2007

J. Viheriala, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43, 150–151 (2007).
[CrossRef]

2005

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 596502 (2005).
[CrossRef]

D. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364(2005).
[CrossRef]

1998

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B 51, 92–99(1998).
[CrossRef]

1997

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
[CrossRef]

1994

1993

1992

A. B. Harker and J. F. DeNatale, “Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
[CrossRef]

M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992).
[CrossRef] [PubMed]

1991

1984

1962

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386(1962).
[CrossRef] [PubMed]

Austin, M. W.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on optical fiber end faces for chemical sensing,” Proc. SPIE 7004, 70042H(2008).
[CrossRef]

Bae, S. Y.

Bernhard, C. G.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386(1962).
[CrossRef] [PubMed]

Bitzer, H.-M.

G. Ehret, E. Buhr, S. Gabler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, S840(2009).
[CrossRef]

Bitzer, M.

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 596502 (2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 1, pp. 54–74.

Brundrett, D. L.

Buhr, E.

G. Ehret, E. Buhr, S. Gabler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, S840(2009).
[CrossRef]

DeNatale, J. F.

A. B. Harker and J. F. DeNatale, “Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
[CrossRef]

Ehret, G.

G. Ehret, E. Buhr, S. Gabler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, S840(2009).
[CrossRef]

Gabler, S.

G. Ehret, E. Buhr, S. Gabler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, S840(2009).
[CrossRef]

Gaylord, T. K.

Gebhardt, M.

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 596502 (2005).
[CrossRef]

Glytsis, E. N.

Gunning, W. J.

Haisma, J.

Harker, A. B.

A. B. Harker and J. F. DeNatale, “Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
[CrossRef]

Hill, W.

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B 51, 92–99(1998).
[CrossRef]

Hobbs, D.

D. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364(2005).
[CrossRef]

Kontio, J.

J. Viheriala, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43, 150–151 (2007).
[CrossRef]

Kostovski, G.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on optical fiber end faces for chemical sensing,” Proc. SPIE 7004, 70042H(2008).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
[CrossRef]

Lee, Y. T.

MacLeod, B. D.

D. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364(2005).
[CrossRef]

Miller, W. H.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386(1962).
[CrossRef] [PubMed]

Mitchell, A.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on optical fiber end faces for chemical sensing,” Proc. SPIE 7004, 70042H(2008).
[CrossRef]

Morris, G. M.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
[CrossRef]

D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
[CrossRef] [PubMed]

Motamedi, M. E.

Niemi, T.

J. Viheriala, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43, 150–151 (2007).
[CrossRef]

Pessa, M.

J. Viheriala, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43, 150–151 (2007).
[CrossRef]

Raguin, D. H.

Rytkonen, T.

J. Viheriala, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43, 150–151 (2007).
[CrossRef]

Song, Y. M.

Southwell, W. H.

Stoddart, P. R.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on optical fiber end faces for chemical sensing,” Proc. SPIE 7004, 70042H(2008).
[CrossRef]

van de Werf, P.

Viets, C.

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B 51, 92–99(1998).
[CrossRef]

Viheriala, J.

J. Viheriala, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43, 150–151 (2007).
[CrossRef]

White, D. J.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on optical fiber end faces for chemical sensing,” Proc. SPIE 7004, 70042H(2008).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 1, pp. 54–74.

Yu, J. S.

Zosel, J.

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 596502 (2005).
[CrossRef]

Acta Physiol. Scand.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386(1962).
[CrossRef] [PubMed]

Appl. Opt.

Electron. Lett.

J. Viheriala, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43, 150–151 (2007).
[CrossRef]

J. Opt. Soc. Am. A

Nanotechnology

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
[CrossRef]

Opt. Lett.

Plasma Process. Polym.

G. Ehret, E. Buhr, S. Gabler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, S840(2009).
[CrossRef]

Proc. SPIE

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on optical fiber end faces for chemical sensing,” Proc. SPIE 7004, 70042H(2008).
[CrossRef]

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 596502 (2005).
[CrossRef]

D. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364(2005).
[CrossRef]

A. B. Harker and J. F. DeNatale, “Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
[CrossRef]

Sens. Actuators B

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B 51, 92–99(1998).
[CrossRef]

Other

“Damage threshold at 10.6μm in AMTIR2 glass for example was almost two times larger when patterned with motheye structure compared to when the substrate is left bare,” TelAztec (personal communication, 2010).

The period, or feature separation, is around 920nm.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 1, pp. 54–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup used for direct stamping: (a) side view, (b) top view (fiber, not shown, is mounted above the shim).

Fig. 2
Fig. 2

SEM images of (a) stamped As 2 S 3 fiber end and (b) details of transferred structure on fiber. Markers read 30 and 1 μm , respectively.

Fig. 3
Fig. 3

SEM images of a stamped As 2 S 3 fiber end—overview and detail. Markers read 30 and 10 μm , respectively.

Fig. 4
Fig. 4

As 2 S 3 fiber end stamped using a positive nickel shim (28A): (a) profile of nickel shim, (b) overview of stamped fiber end, and (c) FIB image of the core area (platinum was used as milling protective layer). Marker for (c) reads 3 μm .

Fig. 5
Fig. 5

As 2 S 3 fiber end stamped using a negative nickel shim (28B): (a) profile of nickel shim, (b) FIB detail of the shim features, and (c) SEM image of the stamped fiber core area. Markers read 10, 3, and 1 μm , respectively.

Fig. 6
Fig. 6

As 2 S 3 fiber end stamped using a positive silicon shim (81104): (a) profile of silicon pattern, (b) overview of stamped fiber end ( 10 μm marker), (c) detail of pattern in the core area, and (d) FIB image of the core area (platinum was used as a milling protective layer).

Fig. 7
Fig. 7

Performance of stamped As 2 S 3 fiber using shim 28B (feature height estimated at 849 nm ).

Tables (1)

Tables Icon

Table 1 Transmission Values for Fiber Ends Stamped with Various Shims a, b

Metrics