Abstract

The upper height of a region of intense backscatter with a poorly defined boundary between this region and a region of clear air above it is found as the maximal height where aerosol heterogeneity is detectable, that is, where it can be discriminated from noise. The theoretical basis behind the retrieval technique and the corresponding lidar-data-processing procedures are discussed. We also show how such a technique can be applied to one-directional measurements. Examples of typical results obtained with a scanning lidar in smoke-polluted atmospheres and experimental data obtained in an urban atmosphere with a vertically pointing lidar are presented.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. I. Cooper and W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22937-22948 (1994).
    [CrossRef]
  2. L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945-954(1999).
    [CrossRef]
  3. I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Oceanic Technol. 20, 1092-1105 (2003).
    [CrossRef]
  4. V. A. Kovalev, A. Petkov, C. Wold, S. Urbanski, and W. M. Hao, “Determination of smoke plume and layer heights using scanning lidar data,” Appl. Opt. 48, 5287-5294(2009).
    [CrossRef] [PubMed]
  5. V. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 71-74.
  6. http://www.arm.gov/measurements/cloudbase Website of The ARM Climate Research Facility, U.S. Department of Energy.
  7. S. Urbanski, V. Kovalev, W. M. Hao, C. Wold, and A. Petkov, “Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 1051-1054.
  8. http://www.esrl.noaa.gov/csd/calnex/whitepaper.pdf.
  9. B. Hennemuth and A. Lammert, “Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter,” Bound.-Layer Meteorol. 120, 181-200 (2006).
    [CrossRef]
  10. K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
    [CrossRef]
  11. A. Lammert and J. Bösenberg, “Determination of the convective boundary-layer height with laser remote sensing,” Bound.-Layer Meteorol. 119, 159-170 (2006).
    [CrossRef]
  12. V. Mitev, R. Matthey, and V. Makarov, “Compact micro-pulse backscatter lidar and examples of measurements in the planetary boundary layer,” Rom. J. Phys. (to be published).

2009

2006

B. Hennemuth and A. Lammert, “Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter,” Bound.-Layer Meteorol. 120, 181-200 (2006).
[CrossRef]

A. Lammert and J. Bösenberg, “Determination of the convective boundary-layer height with laser remote sensing,” Bound.-Layer Meteorol. 119, 159-170 (2006).
[CrossRef]

2003

I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Oceanic Technol. 20, 1092-1105 (2003).
[CrossRef]

2000

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
[CrossRef]

1999

1994

D. I. Cooper and W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22937-22948 (1994).
[CrossRef]

Bösenberg, J.

A. Lammert and J. Bösenberg, “Determination of the convective boundary-layer height with laser remote sensing,” Bound.-Layer Meteorol. 119, 159-170 (2006).
[CrossRef]

Brooks, I. M.

I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Oceanic Technol. 20, 1092-1105 (2003).
[CrossRef]

Cooper, D. I.

D. I. Cooper and W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22937-22948 (1994).
[CrossRef]

Davis, K. J.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
[CrossRef]

Eichinger, W. E.

D. I. Cooper and W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22937-22948 (1994).
[CrossRef]

Flamant, C.

Flamant, P. H.

Gamage, N.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
[CrossRef]

Hagelberg, C. R.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
[CrossRef]

Hao, W. M.

V. A. Kovalev, A. Petkov, C. Wold, S. Urbanski, and W. M. Hao, “Determination of smoke plume and layer heights using scanning lidar data,” Appl. Opt. 48, 5287-5294(2009).
[CrossRef] [PubMed]

V. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 71-74.

S. Urbanski, V. Kovalev, W. M. Hao, C. Wold, and A. Petkov, “Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 1051-1054.

Hennemuth, B.

B. Hennemuth and A. Lammert, “Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter,” Bound.-Layer Meteorol. 120, 181-200 (2006).
[CrossRef]

Kiemle, C.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
[CrossRef]

Kovalev, V.

S. Urbanski, V. Kovalev, W. M. Hao, C. Wold, and A. Petkov, “Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 1051-1054.

V. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 71-74.

Kovalev, V. A.

Lammert, A.

B. Hennemuth and A. Lammert, “Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter,” Bound.-Layer Meteorol. 120, 181-200 (2006).
[CrossRef]

A. Lammert and J. Bösenberg, “Determination of the convective boundary-layer height with laser remote sensing,” Bound.-Layer Meteorol. 119, 159-170 (2006).
[CrossRef]

Lenschow, D. H.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
[CrossRef]

Makarov, V.

V. Mitev, R. Matthey, and V. Makarov, “Compact micro-pulse backscatter lidar and examples of measurements in the planetary boundary layer,” Rom. J. Phys. (to be published).

Matthey, R.

V. Mitev, R. Matthey, and V. Makarov, “Compact micro-pulse backscatter lidar and examples of measurements in the planetary boundary layer,” Rom. J. Phys. (to be published).

Menut, L.

Mitev, V.

V. Mitev, R. Matthey, and V. Makarov, “Compact micro-pulse backscatter lidar and examples of measurements in the planetary boundary layer,” Rom. J. Phys. (to be published).

Pelon, J.

Petkov, A.

V. A. Kovalev, A. Petkov, C. Wold, S. Urbanski, and W. M. Hao, “Determination of smoke plume and layer heights using scanning lidar data,” Appl. Opt. 48, 5287-5294(2009).
[CrossRef] [PubMed]

V. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 71-74.

S. Urbanski, V. Kovalev, W. M. Hao, C. Wold, and A. Petkov, “Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 1051-1054.

Sullivan, P. P.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
[CrossRef]

Urbanski, S.

V. A. Kovalev, A. Petkov, C. Wold, S. Urbanski, and W. M. Hao, “Determination of smoke plume and layer heights using scanning lidar data,” Appl. Opt. 48, 5287-5294(2009).
[CrossRef] [PubMed]

S. Urbanski, V. Kovalev, W. M. Hao, C. Wold, and A. Petkov, “Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 1051-1054.

Wold, C.

V. A. Kovalev, A. Petkov, C. Wold, S. Urbanski, and W. M. Hao, “Determination of smoke plume and layer heights using scanning lidar data,” Appl. Opt. 48, 5287-5294(2009).
[CrossRef] [PubMed]

V. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 71-74.

S. Urbanski, V. Kovalev, W. M. Hao, C. Wold, and A. Petkov, “Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 1051-1054.

Appl. Opt.

Bound.-Layer Meteorol.

B. Hennemuth and A. Lammert, “Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter,” Bound.-Layer Meteorol. 120, 181-200 (2006).
[CrossRef]

A. Lammert and J. Bösenberg, “Determination of the convective boundary-layer height with laser remote sensing,” Bound.-Layer Meteorol. 119, 159-170 (2006).
[CrossRef]

J. Atm. Oceanic Technol.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atm. Oceanic Technol. 17, 1455-1468(2000).
[CrossRef]

J. Atmos. Oceanic Technol.

I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Oceanic Technol. 20, 1092-1105 (2003).
[CrossRef]

J. Geophys. Res.

D. I. Cooper and W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22937-22948 (1994).
[CrossRef]

Other

V. Mitev, R. Matthey, and V. Makarov, “Compact micro-pulse backscatter lidar and examples of measurements in the planetary boundary layer,” Rom. J. Phys. (to be published).

V. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 71-74.

http://www.arm.gov/measurements/cloudbase Website of The ARM Climate Research Facility, U.S. Department of Energy.

S. Urbanski, V. Kovalev, W. M. Hao, C. Wold, and A. Petkov, “Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study,” in Proceedings of the 25th International Laser Radar Conference (IAO SB RAS, 2010), pp. 1051-1054.

http://www.esrl.noaa.gov/csd/calnex/whitepaper.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of data collection with a vertically scanning lidar during the Kootenai Creek Fire in Montana in July and August 2009. (The azimuthal sector 45 ° 65 ° , which overlaps the wildfire site, is not shown in this figure.)

Fig. 2
Fig. 2

Example of data obtained by a scanning lidar at the wavelength of 1064 nm in the smoke-polluted atmosphere in the vicinity of Missoula, Montana. The gray curves represent the set of 28 functions, R ( φ i , h j ) . The resulting heterogeneity function, R θ , max ( h ) , is shown as the thick black curve.

Fig. 3
Fig. 3

Black curve is the same heterogeneity function, R θ , max ( h ) , as in Fig. 2, and the gray blocks illustrate the dependence of the retrieved smoke plume height, h sm , max , on the selected χ.

Fig. 4
Fig. 4

Black-gray squares show the AHHI derived with χ opt = 0.15 . The maximal height, where the minimal number of the heterogeneity events exceeds zero [that is, n ( h ) = 1 ], is h sm , max = 3078 m . The thick black curve is the function R θ , max ( h ) , the same as in Figs. 2, 3.

Fig. 5
Fig. 5

Dependence of the retrieved height, h sm , max , on the selected χ for the heterogeneity function, R θ , max ( h ) , shown in Figs. 2, 3, 4.

Fig. 6
Fig. 6

Maximum heights of the smoke plume determined at different azimuthal directions measured in the vicinity of the Kootenai Creek Fire on 27 August 2009 during the period from 12:09 to 12:27. The horizontal dashed line indicates the smoke plume height determined from airborne measurements.

Fig. 7
Fig. 7

Maximal heights of the polluted air obtained for different χ during the CalNex-LA experiment in Pasadena, Calif., on 24 May 2010. The empty diamonds show the heights obtained with χ opt = 0.1 , the filled diamonds show the heights obtained with χ = χ opt + Δ χ = 0.15 , and the vertical lines show the cases of the increased difference between the heights, h sm , max ( χ opt ) and h sm , max ( χ opt + Δ χ ) . The heights of the maximum heterogeneity ( χ = 0.9 ) are shown as empty circles.

Fig. 8
Fig. 8

Range-corrected signals, P ( r ) r 2 , versus height obtained on 24 May 2010 from 17:15 to 18:15. The detached aerosol layers close to the top of the boundary layer, at the heights 1550 1850 m , are clearly seen.

Fig. 9
Fig. 9

χ-isoclinic lines obtained on 25 May 2010 for the set of fixed χ. The values of χ are shown in the legend.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P Σ ( r ) = P ( r ) + B .
Y ( x ) = P Σ ( x ) x = [ P ( x ) + B ] x ,
Y 0 ( x ) = Y ( x ) d Y d x x .
Y 0 , norm ( x ) = Y 0 ( x ) x + ε x max ,
Δ x = r i + 1 2 r i 2 = Δ r 2 ( 1 + 2 r i Δ r ) .
f i , j = | Y 0 , norm ( φ i , h j ) | .
R φ = 1 f max F φ .
R θ , max ( h ) = max [ R ( φ 1 , h ) , R ( φ 2 , h ) , , R ( φ i , h ) , , R ( φ N , h ) ] .
f i , j * = | Y 0 , norm ( t i , h j ) | ,

Metrics