Abstract

By an analysis of the photodetection process, the response of photodetectors to wide band, noncoherent light and guidelines for its improvement are determined. In this paper, the phenomenon of multiple reflections within the emitter of a reflecting-translucent and a reflecting-opaque photocathode is analyzed. Geometrical and optical configurations and solid state parameters are evaluated in terms of their effect on the photodetection process. The quantum yield, the percent of incident light absorbed, and the collection efficiency are determined as functions of the thickness of the emitting layer. These results are then employed to suggest areas of improvement in the use of state-of-the-art photocathodes.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Deutscher, Z. Physik 151, 536 (1958).
    [CrossRef]
  2. J. L. Gumnick, “Improved Quantum Efficiency Laser Detectors,” Tech. Rept. AFAL-TR-65-190 (July1965), Prepared by ITT Industrial Laboratories, Indiana, for AF Avionics Laboratory, Wright-Patterson AFB, Ohio.
  3. W. E. Spicer, F. Wooten, IEEE Proc. 51, 1119 (1963).
    [CrossRef]
  4. J. L. Gumnick, “Interim Engineering Report on Improved Quantum Efficiency Laser Detectors,” AF Contract AF 33(615)-3082 (January1966). Prepared by ITT Industrial Laboratories, Indiana, for AF Avionics Laboratory, Wright-Patterson AFB, Ohio.

1963

W. E. Spicer, F. Wooten, IEEE Proc. 51, 1119 (1963).
[CrossRef]

1958

K. Deutscher, Z. Physik 151, 536 (1958).
[CrossRef]

Deutscher, K.

K. Deutscher, Z. Physik 151, 536 (1958).
[CrossRef]

Gumnick, J. L.

J. L. Gumnick, “Interim Engineering Report on Improved Quantum Efficiency Laser Detectors,” AF Contract AF 33(615)-3082 (January1966). Prepared by ITT Industrial Laboratories, Indiana, for AF Avionics Laboratory, Wright-Patterson AFB, Ohio.

J. L. Gumnick, “Improved Quantum Efficiency Laser Detectors,” Tech. Rept. AFAL-TR-65-190 (July1965), Prepared by ITT Industrial Laboratories, Indiana, for AF Avionics Laboratory, Wright-Patterson AFB, Ohio.

Spicer, W. E.

W. E. Spicer, F. Wooten, IEEE Proc. 51, 1119 (1963).
[CrossRef]

Wooten, F.

W. E. Spicer, F. Wooten, IEEE Proc. 51, 1119 (1963).
[CrossRef]

IEEE Proc

W. E. Spicer, F. Wooten, IEEE Proc. 51, 1119 (1963).
[CrossRef]

Z. Physik

K. Deutscher, Z. Physik 151, 536 (1958).
[CrossRef]

Other

J. L. Gumnick, “Improved Quantum Efficiency Laser Detectors,” Tech. Rept. AFAL-TR-65-190 (July1965), Prepared by ITT Industrial Laboratories, Indiana, for AF Avionics Laboratory, Wright-Patterson AFB, Ohio.

J. L. Gumnick, “Interim Engineering Report on Improved Quantum Efficiency Laser Detectors,” AF Contract AF 33(615)-3082 (January1966). Prepared by ITT Industrial Laboratories, Indiana, for AF Avionics Laboratory, Wright-Patterson AFB, Ohio.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reflecting-translucent photocathode. (see Ref. 2). (R and R0 = reflection coefficients.)

Fig. 2
Fig. 2

Reflecting-opaque photocathode (see Ref. 2).

Fig. 3
Fig. 3

Quantum yield vs photoemitter thickness. θ incident = 0°, N = 5, l = 300 Å, translucent —, opaque ---.

Fig. 4
Fig. 4

Front-to-back ratio vs thickness. θ incident = 0°, N = 5, l = 300 Å.

Fig. 5
Fig. 5

Absorption efficiency vs photoemitter thickness. θ incident = 0°, N = 5, l = 300 Å.

Fig. 6
Fig. 6

Collection efficiency vs photoemitter thickness. θ incident = 0°, N = 5, l = 300 Å, translucent —, opaque---.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Y = No . photons absorbed No . photons incident on cathode × No . electrons emitted No . electrons generated .
Y = 0 T [ No . photoelectrons stimulated ] × [ electron diffusion probability ] d x ,
I = I 0 [ e - α x + R e - α T e - α ( T - x ) + R R 0 e - 2 α T e - α x + R 2 R 0 e - 3 α T e - α ( T - x ) + R 2 R 0 2 e - 4 α T e - α x + ] ,
I = I 0 [ e - α x + R e - α ( 2 T - x ) 1 - R R 0 e - 2 α T ] .
Y = 0 T α I e - ( T - x ) / l d x .
Y = P ( P - 1 ) ( e - τ - e - P τ ) + P R P + 1 [ e - P τ - e - ( 2 P + 1 ) τ ] 1 - R R 0 e - α P τ ,
A = 0 T α I d x .
A = ( 1 - e - P τ ) ( 1 + R e - P τ ) 1 - R R 0 e - 2 P τ .
Y = ( P / P + 1 ) ( 1 - e - ( P + 1 ) τ ) + ( P R 0 / P - 1 ) e - P τ ( e - τ - e - P τ ) 1 - R R 0 e - α P τ
A = ( 1 + R 0 e - P τ ) ( 1 - e - P τ ) 1 - R R 0 e - α P τ .
Ordinate ( RT ) = ( 1 - R g , p k ) Ordinate ( LT ) ( 1 - R g , v ) ( 1 - R v , p k ) ,

Metrics