Abstract

Two aspects of the concept of local thermodynamic equilibrium are examined in medium-pressure, mercury arc discharges with thallium iodide additives. It is shown theoretically that the experimental intensity of the Tl 5350 Å line is reasonably consistent with a Boltzmann distribution of excited states. In fact, it is theoretically and experimentally shown that self-absorption is a major factor in limiting the intensity of the bright thallium 5350 Å line even though Ti is a minor constituent in the discharge and even though this line does not terminate on the ground state. The dramatic spectral inhomogeneity that develops in long, horizontal, ac discharges with excess TlI in the presence of a longitudinal temperature gradient is examined in detail. Both emission and absorption studies show that the spectral inhomogeneity is caused by a large gradient in the thallium concentration. This inhomogeneous distribution of TlI vapors is caused by an inhomogeneous and unsymmetrical distribution of condensed TlI along the tube walls which results from the temperature gradient. In turn, the temperature gradient is increased by the ionization of thallium which locally decreases the electrical resistivity, electric field, and power input to the arc. Thus, an equilibrium distribution of TlI vapors is attained only if the distribution of condensed TlI is reasonably uniform and the tube geometry and pressure are favorable for rapid diffusion of the vapors. The inhomogeneity also disappears if a sufficiently small quantity of solid TlI is added to the lamp so that it is all vaporized.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Elenbaas, The High Pressure Mercury Vapour Discharge (Interscience, New York, 1951). See also, D. B. Gurevich, I. V. Podmonshenskii, Opt. Spectry. 15, 319 (1963).
  2. D. A. Larson, H. D. Fraser, W. V. Vushing, M. C. Unglert, Illum. Engr. 58, 434 (1963).
  3. G. H. Reiling, J. Opt. Soc. Am. 54, 532 (1964).
    [CrossRef]
  4. W. C. Gungle, F. Koury, J. F. Waymouth, J. Opt. Soc. Am. 54, 566 (1964); J. F. Waymouth, W. C. Gungle, J. M. Harris, F. Koury, Illum. Engr. 60, 85 (1965).
  5. E. C. Martt, L. J. Smialek, A. C. Green, Illum. Engr. 59, 34 (1964).
  6. T. H. Rautenberg, P. D. Johnson, Appl. Opt. 3, 487 (1964); P. D. Johnson, T. H. Rautenberg, J. Opt. Soc. Am. 54, 1425 (1964).
    [CrossRef]
  7. L. S. Frost, Westinghouse Research (private communication on unpublished studies of Hg + TlI lamps).
  8. C. F. Gallo (unpublished studies performed at the Westinghouse Research Laboratory).
  9. G. Cario, J. Frank, Z. Physik 17, 202 (1923); R. E. Swanson, R. H. McFarland, Phys. Rev. 98, 1063 (1955); R. A. Anderson, R. H. McFarland, Phys. Rev. 119, 693 (1960); E. K. Kraulinya, A. E. Lezdin, Yu. A. Silin, Opt. Spectry. 19, 84 (1965).
    [CrossRef]
  10. J. A. McInally, Xerox Research (private communication) and 18th Gaseous Electronics Conference, Minneapolis, Minnesota, Oct. 1965.
  11. G. H. Reiling, Inst. Radio Engrs. Trans. Electron Devices9, 271 (1962) and (private communication).
    [CrossRef]
  12. A. V. Phelps, Westinghouse Research (private communication).
  13. C. Corliss, W. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (Government Printing Office, Washington, D. C., 1962), Natl. Bur. Std. Monogr. 53.
  14. T. Holstein, Phys. Rev. 83, 1159 (1951).
    [CrossRef]
  15. T. Holstein, Phys. Rev. 72, 1212 (1947).
    [CrossRef]
  16. A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, Cambridge, England, 1934).
  17. S. Chen, M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
    [CrossRef]
  18. Reference 17, Table 3.
  19. W. Furssov, A. Vlassov, Phys. Zeits. Sowjetunion 10, 378 (1936). This reference was taken from Ref. 15, Eq. (5.17).

1964 (4)

G. H. Reiling, J. Opt. Soc. Am. 54, 532 (1964).
[CrossRef]

W. C. Gungle, F. Koury, J. F. Waymouth, J. Opt. Soc. Am. 54, 566 (1964); J. F. Waymouth, W. C. Gungle, J. M. Harris, F. Koury, Illum. Engr. 60, 85 (1965).

E. C. Martt, L. J. Smialek, A. C. Green, Illum. Engr. 59, 34 (1964).

T. H. Rautenberg, P. D. Johnson, Appl. Opt. 3, 487 (1964); P. D. Johnson, T. H. Rautenberg, J. Opt. Soc. Am. 54, 1425 (1964).
[CrossRef]

1963 (1)

D. A. Larson, H. D. Fraser, W. V. Vushing, M. C. Unglert, Illum. Engr. 58, 434 (1963).

1957 (1)

S. Chen, M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
[CrossRef]

1951 (1)

T. Holstein, Phys. Rev. 83, 1159 (1951).
[CrossRef]

1947 (1)

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

1936 (1)

W. Furssov, A. Vlassov, Phys. Zeits. Sowjetunion 10, 378 (1936). This reference was taken from Ref. 15, Eq. (5.17).

1923 (1)

G. Cario, J. Frank, Z. Physik 17, 202 (1923); R. E. Swanson, R. H. McFarland, Phys. Rev. 98, 1063 (1955); R. A. Anderson, R. H. McFarland, Phys. Rev. 119, 693 (1960); E. K. Kraulinya, A. E. Lezdin, Yu. A. Silin, Opt. Spectry. 19, 84 (1965).
[CrossRef]

Bozman, W.

C. Corliss, W. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (Government Printing Office, Washington, D. C., 1962), Natl. Bur. Std. Monogr. 53.

Cario, G.

G. Cario, J. Frank, Z. Physik 17, 202 (1923); R. E. Swanson, R. H. McFarland, Phys. Rev. 98, 1063 (1955); R. A. Anderson, R. H. McFarland, Phys. Rev. 119, 693 (1960); E. K. Kraulinya, A. E. Lezdin, Yu. A. Silin, Opt. Spectry. 19, 84 (1965).
[CrossRef]

Chen, S.

S. Chen, M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
[CrossRef]

Corliss, C.

C. Corliss, W. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (Government Printing Office, Washington, D. C., 1962), Natl. Bur. Std. Monogr. 53.

Elenbaas, W.

W. Elenbaas, The High Pressure Mercury Vapour Discharge (Interscience, New York, 1951). See also, D. B. Gurevich, I. V. Podmonshenskii, Opt. Spectry. 15, 319 (1963).

Frank, J.

G. Cario, J. Frank, Z. Physik 17, 202 (1923); R. E. Swanson, R. H. McFarland, Phys. Rev. 98, 1063 (1955); R. A. Anderson, R. H. McFarland, Phys. Rev. 119, 693 (1960); E. K. Kraulinya, A. E. Lezdin, Yu. A. Silin, Opt. Spectry. 19, 84 (1965).
[CrossRef]

Fraser, H. D.

D. A. Larson, H. D. Fraser, W. V. Vushing, M. C. Unglert, Illum. Engr. 58, 434 (1963).

Frost, L. S.

L. S. Frost, Westinghouse Research (private communication on unpublished studies of Hg + TlI lamps).

Furssov, W.

W. Furssov, A. Vlassov, Phys. Zeits. Sowjetunion 10, 378 (1936). This reference was taken from Ref. 15, Eq. (5.17).

Gallo, C. F.

C. F. Gallo (unpublished studies performed at the Westinghouse Research Laboratory).

Green, A. C.

E. C. Martt, L. J. Smialek, A. C. Green, Illum. Engr. 59, 34 (1964).

Gungle, W. C.

W. C. Gungle, F. Koury, J. F. Waymouth, J. Opt. Soc. Am. 54, 566 (1964); J. F. Waymouth, W. C. Gungle, J. M. Harris, F. Koury, Illum. Engr. 60, 85 (1965).

Holstein, T.

T. Holstein, Phys. Rev. 83, 1159 (1951).
[CrossRef]

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

Johnson, P. D.

Koury, F.

W. C. Gungle, F. Koury, J. F. Waymouth, J. Opt. Soc. Am. 54, 566 (1964); J. F. Waymouth, W. C. Gungle, J. M. Harris, F. Koury, Illum. Engr. 60, 85 (1965).

Larson, D. A.

D. A. Larson, H. D. Fraser, W. V. Vushing, M. C. Unglert, Illum. Engr. 58, 434 (1963).

Martt, E. C.

E. C. Martt, L. J. Smialek, A. C. Green, Illum. Engr. 59, 34 (1964).

McInally, J. A.

J. A. McInally, Xerox Research (private communication) and 18th Gaseous Electronics Conference, Minneapolis, Minnesota, Oct. 1965.

Mitchell, A. C. G.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, Cambridge, England, 1934).

Phelps, A. V.

A. V. Phelps, Westinghouse Research (private communication).

Rautenberg, T. H.

Reiling, G. H.

G. H. Reiling, J. Opt. Soc. Am. 54, 532 (1964).
[CrossRef]

G. H. Reiling, Inst. Radio Engrs. Trans. Electron Devices9, 271 (1962) and (private communication).
[CrossRef]

Smialek, L. J.

E. C. Martt, L. J. Smialek, A. C. Green, Illum. Engr. 59, 34 (1964).

Takeo, M.

S. Chen, M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
[CrossRef]

Unglert, M. C.

D. A. Larson, H. D. Fraser, W. V. Vushing, M. C. Unglert, Illum. Engr. 58, 434 (1963).

Vlassov, A.

W. Furssov, A. Vlassov, Phys. Zeits. Sowjetunion 10, 378 (1936). This reference was taken from Ref. 15, Eq. (5.17).

Vushing, W. V.

D. A. Larson, H. D. Fraser, W. V. Vushing, M. C. Unglert, Illum. Engr. 58, 434 (1963).

Waymouth, J. F.

W. C. Gungle, F. Koury, J. F. Waymouth, J. Opt. Soc. Am. 54, 566 (1964); J. F. Waymouth, W. C. Gungle, J. M. Harris, F. Koury, Illum. Engr. 60, 85 (1965).

Zemansky, M. W.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, Cambridge, England, 1934).

Appl. Opt. (1)

Illum. Engr. (2)

D. A. Larson, H. D. Fraser, W. V. Vushing, M. C. Unglert, Illum. Engr. 58, 434 (1963).

E. C. Martt, L. J. Smialek, A. C. Green, Illum. Engr. 59, 34 (1964).

J. Opt. Soc. Am. (2)

G. H. Reiling, J. Opt. Soc. Am. 54, 532 (1964).
[CrossRef]

W. C. Gungle, F. Koury, J. F. Waymouth, J. Opt. Soc. Am. 54, 566 (1964); J. F. Waymouth, W. C. Gungle, J. M. Harris, F. Koury, Illum. Engr. 60, 85 (1965).

Phys. Rev. (2)

T. Holstein, Phys. Rev. 83, 1159 (1951).
[CrossRef]

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

Phys. Zeits. Sowjetunion (1)

W. Furssov, A. Vlassov, Phys. Zeits. Sowjetunion 10, 378 (1936). This reference was taken from Ref. 15, Eq. (5.17).

Rev. Mod. Phys. (1)

S. Chen, M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
[CrossRef]

Z. Physik (1)

G. Cario, J. Frank, Z. Physik 17, 202 (1923); R. E. Swanson, R. H. McFarland, Phys. Rev. 98, 1063 (1955); R. A. Anderson, R. H. McFarland, Phys. Rev. 119, 693 (1960); E. K. Kraulinya, A. E. Lezdin, Yu. A. Silin, Opt. Spectry. 19, 84 (1965).
[CrossRef]

Other (9)

J. A. McInally, Xerox Research (private communication) and 18th Gaseous Electronics Conference, Minneapolis, Minnesota, Oct. 1965.

G. H. Reiling, Inst. Radio Engrs. Trans. Electron Devices9, 271 (1962) and (private communication).
[CrossRef]

A. V. Phelps, Westinghouse Research (private communication).

C. Corliss, W. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (Government Printing Office, Washington, D. C., 1962), Natl. Bur. Std. Monogr. 53.

W. Elenbaas, The High Pressure Mercury Vapour Discharge (Interscience, New York, 1951). See also, D. B. Gurevich, I. V. Podmonshenskii, Opt. Spectry. 15, 319 (1963).

Reference 17, Table 3.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, Cambridge, England, 1934).

L. S. Frost, Westinghouse Research (private communication on unpublished studies of Hg + TlI lamps).

C. F. Gallo (unpublished studies performed at the Westinghouse Research Laboratory).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A comparison of the spectral characteristics of the self-absorbed Hg 2537-Å line at the green and violet ends of the lamp.

Fig. 2
Fig. 2

A comparison of the spectral characteristics of the Tl 3776-Å line at the green and violet ends of the lamp.

Fig. 3
Fig. 3

A comparison of the spectral characteristics of the Tl 5350-Å line at the green and violet ends of the lamp.

Fig. 4
Fig. 4

Schematic diagram (top view) of the equipment used for absorption studies to determine the concentration gradient of thallium in the horizontal absorption lamp. The radiation from the emission lamp was directed by the lenses through the absorption lamp and then through the slit to the spectrophotometer, which was fixed at 3776 Å. The horizontal absorption lamp was mounted on a traverse mechanism so that various sections of the lamp could be continuously sampled.

Fig. 5
Fig. 5

Schematic diagram (top view) of the equipment used to determine the longitudinal variation in the radiant power from a horizontal Hg + TlI discharge. The radiation was directed through a slit and then to a thermopile whose output was monitored on a recorder. The horizontal Hg + TlI discharge was mounted on a traverse mechanism so that various sections of the lamp could be continuously sampled.

Tables (1)

Tables Icon

Table I A Tabulation of the Pertinent Characteristics of a Typical, Lang Hg + TlI Discharge with a Longitudinal Thermal Gradient

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( P r ) Tl 5350 Å = G [ ( g 2 / g 0 ) N 0 exp ( - 2 / k T eff ) ] E A ( L π R eff 2 ) ,
G = [ 1.115 / ( π κ p R ) 1 2 ] ,
κ p = ( λ 0 2 N 1 / 4 π ) ( g 2 / g 1 ) ( A / Z T ) ,
κ ( ν ) = κ p 1 + [ 2 ( ν - ν 0 ) / Δ ν ] 2 = κ p 1 + [ 2 π ( ν - ν 0 ) / Z T ] 2 ,
Z T = π Δ ν .
G = 2.23 / λ 0 [ N 1 ( g 2 / g 1 ) ( A / Z T ) R ] 1 2 ,
Z T = Z Hg + Z T 1 ,
Z Hg = 2 ρ 2 D ( 2 π R T ) 1 2 ( M 1 - 1 + M 2 - 1 ) 1 2 ,
Z Hg = ( 4.25 ) ( 10 ) 10 sec - 1 .
Z T = Z Hg + Z T l Z Hg ( 4.4 ) ( 10 ) 10 sec - 1 .
G = 1 / ( 24 ) ( 4.2 ) ( 10 ) - 2 .
( P r ) Tl 5350 Å 28 W ,

Metrics