Abstract

The relative energy distributions of the M-2, P-25, AG-1, and M-3 flashbulbs have been determined over the spectral range from 3400 Å to 7600 Å, using a National Bureau of Standards lamp as a spectral standard, and a Jarrell–Ash Ebert-mount spectrograph as a spectroradiometer. From these data and the blackbody radiation function, values for the color temperature of the flashbulbs have been calculated using a computer to derive a least-squares, best-fit value of color temperature.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. G. Brockman, J. Opt. Soc. Am. 37, 652 (1947).
    [CrossRef]
  2. R. Stair, R. G. Johnston, E. W. Halbach, J. Res. Natl. Bur. Std. 64A, No. 4 (1963).
  3. L. H. Ahrens, S. P. Taylor, Spectrochemical Analysis (Addison-Wesley Publishing Company, Reading, Mass., 1961), pp. 139–144.
  4. R. W. Pearse, A. G. Gaydon, Identification of Molecular Spectra (John Wiley & Sons, Inc., New York, 1950), 2nd ed., pp. 51, 250–252.

1963 (1)

R. Stair, R. G. Johnston, E. W. Halbach, J. Res. Natl. Bur. Std. 64A, No. 4 (1963).

1947 (1)

Ahrens, L. H.

L. H. Ahrens, S. P. Taylor, Spectrochemical Analysis (Addison-Wesley Publishing Company, Reading, Mass., 1961), pp. 139–144.

Brockman, F. G.

Gaydon, A. G.

R. W. Pearse, A. G. Gaydon, Identification of Molecular Spectra (John Wiley & Sons, Inc., New York, 1950), 2nd ed., pp. 51, 250–252.

Halbach, E. W.

R. Stair, R. G. Johnston, E. W. Halbach, J. Res. Natl. Bur. Std. 64A, No. 4 (1963).

Johnston, R. G.

R. Stair, R. G. Johnston, E. W. Halbach, J. Res. Natl. Bur. Std. 64A, No. 4 (1963).

Pearse, R. W.

R. W. Pearse, A. G. Gaydon, Identification of Molecular Spectra (John Wiley & Sons, Inc., New York, 1950), 2nd ed., pp. 51, 250–252.

Stair, R.

R. Stair, R. G. Johnston, E. W. Halbach, J. Res. Natl. Bur. Std. 64A, No. 4 (1963).

Taylor, S. P.

L. H. Ahrens, S. P. Taylor, Spectrochemical Analysis (Addison-Wesley Publishing Company, Reading, Mass., 1961), pp. 139–144.

J. Opt. Soc. Am. (1)

J. Res. Natl. Bur. Std. (1)

R. Stair, R. G. Johnston, E. W. Halbach, J. Res. Natl. Bur. Std. 64A, No. 4 (1963).

Other (2)

L. H. Ahrens, S. P. Taylor, Spectrochemical Analysis (Addison-Wesley Publishing Company, Reading, Mass., 1961), pp. 139–144.

R. W. Pearse, A. G. Gaydon, Identification of Molecular Spectra (John Wiley & Sons, Inc., New York, 1950), 2nd ed., pp. 51, 250–252.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sylvania flashbulb types used ill this investigation.

Fig. 2
Fig. 2

Spectral energy distribution—P-25 flashbulb.

Fig. 3
Fig. 3

Spectral energy distribution—M-2 flashbulb.

Fig. 4
Fig. 4

Spectral energy distribution—M-3 flashbulb.

Fig. 5
Fig. 5

Spectral energy distribution—AG-1 flashbulb.

Tables (5)

Tables Icon

Table I Flashbulb Characteristics

Tables Icon

Table II Spectrographic Emulsions

Tables Icon

Table III Color Temperature of NBS Lamp by Spectral Region

Tables Icon

Table IV Best Estimate of Flashbulb Color Temperatures

Tables Icon

Table V Color Temperature of M-3 Flashbulb by Spectral Region

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

J λ = C 1 λ - 5 exp ( C 2 λ T - 1 ) .
r = J λ J λ 0 = ( λ 0 λ ) 5 [ 1 - exp ( - C 2 / λ 0 T ) 1 - exp ( - C 2 / λ T ) ] exp [ C 2 ( λ - λ 0 ) λ λ 0 1 T ] .
log r = f ( λ , T ) + ( 1 / T ) g ( λ ) ,
f ( λ , T ) = 5 log ( λ 0 / λ ) + h ( λ , T ) ,
h ( λ , T ) = log [ 1 - exp ( - C 2 / λ 0 T ) 1 - exp ( - C 2 / λ T ) ] ,
g ( λ ) = C 2 ( λ - λ 0 ) / λ λ 0 .
log r = f ( λ ) + ( 1 / T ) g ( λ ) ,
f ( λ ) = 5 log ( λ 0 / λ ) .
i = 1 N [ W i ( log R i - log r i ) ] 2 = a minimum ,
W i 2 σ 2 ( log R i ) = 1.
W i 2 σ 2 ( R i ) / R i 2 = 1
W i 2 [ log R i - f ( λ i ) - ( 1 / T ) g ( λ i ) ] g ( λ i ) = 0.
1 T = W i 2 g ( λ i ) [ log R i - f ( λ i ) ] W i 2 g 2 ( λ i ) .
( 1 T ) = W i 2 g ( λ i ) ( log R i ) W i 2 g 2 ( λ i ) .
( R i ) a v = 0.
( log R i ) ( log R j ) av = ( log R i ) av ( log R j ) a v ( R i ) a v / R i ( R j ) a v / R j 0.
= σ 2 ( 1 / T ) = 2 ( 1 / T ) a v W i 4 g 2 ( λ i ) 2 ( log R i ) a v [ W i 2 g 2 ( λ i ) ] 2 .
2 ( log R i ) a v = σ 2 ( log R i ) ,
W i 2 σ 2 ( log R i ) = 1.
σ 2 ( 1 T ) = σ 2 ( T ) T 4 = W i 2 g 2 ( λ i ) [ W i 2 g 2 ( λ i ) ] 2 = 1 W i 2 g 2 ( λ i ) .
T = R i 2 g 2 ( λ i ) σ 2 ( R i ) / R i g ( λ i ) [ log R i - f ( λ i ) ] σ 2 ( R i ) ,
σ ( T ) = T 2 [ R i 2 g 2 ( λ i ) / σ 2 ( R i ) ] 1 2 .
T = m = 1 M T m σ 2 ( T m ) / m = 1 M 1 σ 2 ( T m )
σ ( T ) = ( m = 1 M 1 σ 2 ( T m ) ) - 1 2 .

Metrics