Abstract

A high-resolution, far ir lamellar grating interferometer that operates in either a single-beam or a double-beam differencing mode of operation is described. The instrument covers a frequency range of 10 cm−1 to 125 cm−1 (1000 μ to 80 μ). To illustrate the general performance of the instrument the pure rotational spectrum of water vapor between 15 cm−1 and 115 cm−1 is presented. It is estimated that the absorption line centers of strong isolated lines are measured to within ±0.008 cm−1. To illustrate the resolution of the instrument, low wavenumber portions of the pure rotational spectrum of DCl are shown. The Cl35–Cl37 isotope splitting of the J = 2 → 3 transition (32.3 cm−1) is clearly resolved. The calculated separation of these two lines is 0.094 cm−1.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Michelson, Phil. Mag. Ser. 5, 31, 256 (1891).
  2. P. Fellgett, thesis, Cambridge Univ. (1951).
  3. P. Fellgett, J. Phys. Radium 19, 187 (1958).
    [Crossref]
  4. H. A. Gebbie, J. Phys. Radium 19, 230 (1958). See also “Submillimeter Wave Spectroscopy Using a Michelson Interferometer,” in Advances in Quantum Electronics, J. R. Singer, Ed., (Columbia University Press, New York, 1961).
    [Crossref]
  5. J. Connes, Rev. Opt. 40, 45, 116, 171, 231 (1961). See also J. Connes, “Spectroscopic Studies Using Fourier Transformations”, NAVWEPS Rept 8099, NOTS TP 3157, U. S. Naval Ordnance Test Station, China Lake, Calif. (Jan.1963).
  6. J. Strong, J. Opt. Soc. Am. 47, 354 (1957).
    [Crossref]
  7. J. Strong, G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).
    [Crossref]
  8. J. Strong, G. A. Vanasse, J. Opt. Soc. Am. 50, 113 (1960).
    [Crossref]
  9. P. L. Richards, J. Opt. Soc. Am. 54, 1474 (1964).
    [Crossref]
  10. P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).
    [Crossref]
  11. T. Williams, J. Opt. Soc. Am. 50, 1159 (1960).
    [Crossref]
  12. E. V. Loewenstein, J. Opt. Soc. Am. 50, 1163 (1960).
    [Crossref]
  13. J. M. Dowling, J. Opt. Soc. Am. 54, 663 (1964).
    [Crossref]
  14. J. M. Dowling, R. T. Hall, J. Mol. Spect. 19, 108 (1966).
    [Crossref]
  15. M. Cowan, W. Gordy, Phys. Rev. 111, 209 (1958).
    [Crossref]
  16. J. Pickworth, H. W. Thompson, Proc. Roy. Soc. (London) A218, 37 (1953).
  17. E. V. Loewenstein, J. Opt. Soc. Am. 51, 108 (1961).
    [Crossref]
  18. B. A. Kiselev, P. F. Parshin, Opt. Spectry. 12, 169 (1962).
  19. J. M. Dowling, Aerospace Rept. No. TDR-469(9260-01)-6 (unpublished).

1966 (1)

J. M. Dowling, R. T. Hall, J. Mol. Spect. 19, 108 (1966).
[Crossref]

1964 (2)

1962 (1)

B. A. Kiselev, P. F. Parshin, Opt. Spectry. 12, 169 (1962).

1961 (2)

E. V. Loewenstein, J. Opt. Soc. Am. 51, 108 (1961).
[Crossref]

J. Connes, Rev. Opt. 40, 45, 116, 171, 231 (1961). See also J. Connes, “Spectroscopic Studies Using Fourier Transformations”, NAVWEPS Rept 8099, NOTS TP 3157, U. S. Naval Ordnance Test Station, China Lake, Calif. (Jan.1963).

1960 (4)

1959 (1)

1958 (3)

M. Cowan, W. Gordy, Phys. Rev. 111, 209 (1958).
[Crossref]

P. Fellgett, J. Phys. Radium 19, 187 (1958).
[Crossref]

H. A. Gebbie, J. Phys. Radium 19, 230 (1958). See also “Submillimeter Wave Spectroscopy Using a Michelson Interferometer,” in Advances in Quantum Electronics, J. R. Singer, Ed., (Columbia University Press, New York, 1961).
[Crossref]

1957 (1)

1953 (1)

J. Pickworth, H. W. Thompson, Proc. Roy. Soc. (London) A218, 37 (1953).

1891 (1)

A. A. Michelson, Phil. Mag. Ser. 5, 31, 256 (1891).

Connes, J.

J. Connes, Rev. Opt. 40, 45, 116, 171, 231 (1961). See also J. Connes, “Spectroscopic Studies Using Fourier Transformations”, NAVWEPS Rept 8099, NOTS TP 3157, U. S. Naval Ordnance Test Station, China Lake, Calif. (Jan.1963).

Cowan, M.

M. Cowan, W. Gordy, Phys. Rev. 111, 209 (1958).
[Crossref]

Dowling, J. M.

J. M. Dowling, R. T. Hall, J. Mol. Spect. 19, 108 (1966).
[Crossref]

J. M. Dowling, J. Opt. Soc. Am. 54, 663 (1964).
[Crossref]

J. M. Dowling, Aerospace Rept. No. TDR-469(9260-01)-6 (unpublished).

Fellgett, P.

P. Fellgett, J. Phys. Radium 19, 187 (1958).
[Crossref]

P. Fellgett, thesis, Cambridge Univ. (1951).

Gebbie, H. A.

H. A. Gebbie, J. Phys. Radium 19, 230 (1958). See also “Submillimeter Wave Spectroscopy Using a Michelson Interferometer,” in Advances in Quantum Electronics, J. R. Singer, Ed., (Columbia University Press, New York, 1961).
[Crossref]

Gordy, W.

M. Cowan, W. Gordy, Phys. Rev. 111, 209 (1958).
[Crossref]

Hall, R. T.

J. M. Dowling, R. T. Hall, J. Mol. Spect. 19, 108 (1966).
[Crossref]

Jacquinot, P.

P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).
[Crossref]

Kiselev, B. A.

B. A. Kiselev, P. F. Parshin, Opt. Spectry. 12, 169 (1962).

Loewenstein, E. V.

Michelson, A. A.

A. A. Michelson, Phil. Mag. Ser. 5, 31, 256 (1891).

Parshin, P. F.

B. A. Kiselev, P. F. Parshin, Opt. Spectry. 12, 169 (1962).

Pickworth, J.

J. Pickworth, H. W. Thompson, Proc. Roy. Soc. (London) A218, 37 (1953).

Richards, P. L.

Strong, J.

Thompson, H. W.

J. Pickworth, H. W. Thompson, Proc. Roy. Soc. (London) A218, 37 (1953).

Vanasse, G. A.

Williams, T.

J. Mol. Spect. (1)

J. M. Dowling, R. T. Hall, J. Mol. Spect. 19, 108 (1966).
[Crossref]

J. Opt. Soc. Am. (8)

J. Phys. Radium (2)

P. Fellgett, J. Phys. Radium 19, 187 (1958).
[Crossref]

H. A. Gebbie, J. Phys. Radium 19, 230 (1958). See also “Submillimeter Wave Spectroscopy Using a Michelson Interferometer,” in Advances in Quantum Electronics, J. R. Singer, Ed., (Columbia University Press, New York, 1961).
[Crossref]

Opt. Spectry. (1)

B. A. Kiselev, P. F. Parshin, Opt. Spectry. 12, 169 (1962).

Phil. Mag. Ser. (1)

A. A. Michelson, Phil. Mag. Ser. 5, 31, 256 (1891).

Phys. Rev. (1)

M. Cowan, W. Gordy, Phys. Rev. 111, 209 (1958).
[Crossref]

Proc. Roy. Soc. (London) (1)

J. Pickworth, H. W. Thompson, Proc. Roy. Soc. (London) A218, 37 (1953).

Rept. Progr. Phys. (1)

P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).
[Crossref]

Rev. Opt. (1)

J. Connes, Rev. Opt. 40, 45, 116, 171, 231 (1961). See also J. Connes, “Spectroscopic Studies Using Fourier Transformations”, NAVWEPS Rept 8099, NOTS TP 3157, U. S. Naval Ordnance Test Station, China Lake, Calif. (Jan.1963).

Other (2)

P. Fellgett, thesis, Cambridge Univ. (1951).

J. M. Dowling, Aerospace Rept. No. TDR-469(9260-01)-6 (unpublished).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Lamellar grating interferometer optical diagram. The foci of the ellipsoids M1 and M2 are at M3 and between M5 and M6.

Fig. 2
Fig. 2

Front face of the lamellar grating. Also shown to the right is the chopper assembly, the back side of M8, flat M3, and the entrance aperture. M10 is just below the grating and M13, which is replaced by a scatter grating after alignment, is above the grating. At present, M3 is mounted on a six-position slide assembly (see text).

Fig. 3
Fig. 3

The instrument in place in the vacuum tank. The light pipe can be seen protruding from the right-hand side of the chamber wall. The sample chamber is in place on the left side. The rails upon which the instrument rides can be seen at the bottom, and the electrical and cooling water connections at the bottom left. The diameter of the vacuum tank is 1.68 m.

Fig. 4
Fig. 4

Block diagram.

Fig. 5
Fig. 5

Single-beam source interferogram from the digital recording. An estimate of the stray light can be made by comparing 1 2 I ( 0 ) with the asymptotic value of the trace. It should be noted that this stray light is largely common to both beams and will cancel out in double-beam operation.

Fig. 6
Fig. 6

Portions of the double-beam interferogram of DCl from the digital recording. The intensity scale is arbitrary. The magnitude of the instrumental drift can be seen by comparing the region around 50 mm o.p.d. with the end of the record at 130 mm o.p.d. It is estimated that the signal-to-noise at 130 mm o.p.d. is about one.

Fig. 7
Fig. 7

Portions of the double-beam water vapor interferogram from the digital recording. The intensity scale is arbitrary. The magnitude of the instrumental drift can be seen by comparing the region around 35 mm o.p.d. with the end of the record at 110 mm o.p.d. It is estimated that the signal-to-noise at 110 mm o.p.d. is about one.

Fig. 8
Fig. 8

Water vapor spectrum. The intensity scale is arbitrary but the dashed line indicates the approximate intensity contour of the source. The cosinusoidal variation of the base line, especially noticeable at low wavenumbers, arises from the channel spectrum of the lamp.

Fig. 9
Fig. 9

Enlargements of two portions of the water vapor spectrum. The small circles are the points calculated by the computer.

Fig. 10
Fig. 10

Enlargements of three portions of the spectrum of DCl. The small circles are the points calculated by the computer. The calculated splitting of the J = 1 → 2 (21.5 cm−1) doublet is 0.063 cm−1, for the J = 2 → 3 (32.2 cm−1) 0.094 cm−1, and for the J = 3 → 4 (43.0 cm−1) 0.126 cm−1.

Tables (2)

Tables Icon

Table I Experimental Parameters of Interferograms Presented

Tables Icon

Table II Pure Rotational Water Vapor Absorption Lines

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = 1 2 I ( 0 ) + 0 ν c E ( ν ) cos 2 π ν x d ν ,
F ( x ) I ( x ) - 1 2 I ( 0 ) = 0 ν c E ( ν ) cos 2 π ν x d ν .
I r ( x ) = 1 2 I r ( 0 ) + 0 ν c E r ( ν ) cos 2 π x ν d ν ,
I s ( x ) = 1 2 I s ( 0 ) + 0 ν c E s ( ν ) cos 2 π x ν d ν ,
F r - s ( x ) = I r ( x ) - I s ( x ) - 1 2 [ I r ( 0 ) - I s ( 0 ) ] = 0 ν c [ E r ( ν ) - E s ( ν ) ] cos 2 π x ν d ν .

Metrics